PSPP Users’ Guide

GNU PSPP Statistical Analysis Software
Release 0.10.2-g654fff

This manual is for GNU PSPP version 0.10.2-g654fff, software for statistical analysis.

Copyright (©) 1997, 1998, 2004, 2005, 2009, 2012, 2013, 2014, 2016 Free Software Foundation,
Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

The authors wish to thank Network Theory Ltd http://www.network-theory.co.uk
for their financial support in the production of this manual.

http://www.network-theory.co.uk

Table of Contents

1 Introduction.................., 2
2 Your rights and obligations 3
3 Invoking pspp..........oii i 4
3.1 Main Optionsoi e 4
3.2 PDF, PostScript, and SVG Output Options 7
3.3 Plain Text Output Options......... ..o, 8
3.4 HTML Output Optionsc.ueiiiiiiiii .. 9
3.5 OpenDocument Output Options.................ooiiiia... 10
3.6 Comma-Separated Value Output Options...................... 10

4 Invoking psppire............ ... 12
4.1 The graphic user interface................ .o i, 12

5 Using PSPP ...ttt 13
5.1 Preparation of Data Files i 13
5.1.1 Defining Variables........... ... oo 14

5.1.2 Listing the data......... .o i i 15

5.1.3 Reading data from a text file............ 15

5.1.4 Reading data from a pre-prepared pPspp file............... 15

5.1.5 Saving datatoa PSPP file.......... ... it 16

5.1.6 Reading data from other sources.......................... 16

5.1.7 Exiting PSPP 16

5.2 Data Screening and Transformation 16
5.2.1 Identifying incorrect data.............. ..., 16

5.2.2 Dealing with suspicious data 18

5.2.3 Inverting negatively coded variables 19

5.2.4 Testing data consistency..............oooiiiiiiiii 19

5.2.5 Testing for normality........... ... oo, 20

5.3 Hypothesis Testing. ... 23
5.3.1 Testing for differences of means........................... 23

5.3.2 Linear Regression, 24

6 The PsPP language............................. 28
6.1 TOKeNS. . oot 28
6.2 Forming commands of tokens.............ol 29
6.3 Syntax Variants.......... ... 30
6.4 Types of Commandsoviiiiiiiiiiiiiiiiiennna... 30
6.5 Order of Commandsccoouiiiiiiiiiiiiiiniiean. 31

6.6 Handling missing observations................ oL 32

6.7 Datasets e 32
6.7.1 Attributes of Variables 32
6.7.2 Variables Automatically Defined by PSPP................. 34
6.7.3 Lists of variable names il 34
6.7.4 Input and Output Formats............, 34

6.7.4.1 Basic Numeric Formats.............................. 35
6.7.4.2 Custom Currency Formats............... 37
6.7.4.3 Legacy Numeric Formats............................ 38
6.7.4.4 Binary and Hexadecimal Numeric Formats........... 39
6.7.4.5 Time and Date Formats............................. 40
6.7.4.6 Date Component Formats........................... 43
6.7.4.7 String Formats.......... ... i i 43
6.7.5 Scratch Variables................c ... 43

6.8 Files Used by PSPPottt 43

6.9 File Handles......o 44

6.10 Backus-Naur Form 45

Mathematical Expressions.................... 46

7.1 Boolean Valueso i 46

7.2 Missing Values in Expressions...............oooiiiiiiii.. 46

7.3 Grouping Operators.c..ouuuiiiiiiiiiiiiiiiienn.. 46

7.4 Arithmetic Operatorso, 46

7.5 Logical Operators........ ..., 47

7.6 Relational Operators., 47

7.7 FUNCHIONS . oot 48
7.7.1 Mathematical Functions.................. 48
7.7.2 Miscellaneous Mathematical Functions.................... 48
7.7.3 Trigonometric Functions.............. oo 49
7.7.4 Missing-Value Functions...................... o i 49
7.7.5 Set-Membership Functions 50
7.7.6 Statistical Functions............ 50
7.7.7 String Functions o i 51
7.7.8 Time & Date Functions 53

7.7.8.1 How times & dates are defined and represented 53
7.7.8.2 Functions that Produce Times....................... 54
7.7.8.3 Functions that Examine Times 54
7.7.8.4 Functions that Produce Dates....................... 54
7.7.8.5 Functions that Examine Dates....................... 55
7.7.8.6 Time and Date Arithmetic 56
7.7.9 Miscellaneous Functions...................ccooiinaa.... 57
7.7.10 Statistical Distribution Functions........................ 58
7.7.10.1 Continuous Distributions........................... 59
7.7.10.2 Discrete Distributions................. 62
7.8 Operator Precedence. ..., 63

ii

8 Data Input and Output....................... 64

8.1 BEGIN DATA ... 64
8.2 CLOSE FILE HANDLE. ... 64
8.3 DATAFILE ATTRIBUTE.o 64
8.4 DATASET commands..........oouuiiiiiiiiiiieenineanns. 65
8.5 DATA LIST .. 66
8.5.1 DATA LIST FIXED.o 66
Examples 68

8.5.2 DATA LIST FREE.o 69
853 DATA LIST LIST e 70
8.6 END CASE i 70
8.7 END FILE.o e 70
8.8 FILE HANDLEo e 70
8.9 INPUT PROGRAM ... e 73
B.10 LIS . 76
811 NEW FILE ... e 76
8.12 PRINT .. 76
8.13 PRINT EJECT ... e 77
8.14 PRINT SPACEo 78
8.15 REREADo e 78
8.16 REPEATING DATA e 78
817 WRITE ..o 80
9 System and Portable File I/O................ 81
9.1 APPLY DICTIONARY ...t 81
9.2 EXPORT ... 82
0.3 GET .. . 82
9.4 GET DA A .. 83
9.4.1 Spreadsheet Files...... ..o i 84
9.4.2 Postgres Database Querieso 84
9.4.3 Textual Data Files i, 85
9.4.3.1 Reading Delimited Data........................ ... 86
9.4.3.2 Reading Fixed Columnar Data 88

9.5 IMPORT ... 89
0.6 SAVE ... 89
9.7 SAVE TRANSLATE ... e 91
9.7.1 Writing Comma- and Tab-Separated Data Files........... 91
9.8 SYSFILE INFO. ... e 93
9.9 XEXPORT ... 93
0.10 XSAVE ..o 93
10 Combining Data Files........................ 95
10.1 Common SYNEAK ..o .vvvnt ettt 95
10.2 ADD FILES ... e e 97
10.3 MATCH FILES. . ..o e 98

104 UPDATE ... o 99

11 Manipulating variables..................... 100
11.1 ADD VALUE LABELS . ..o 100
11.2 DELETE VARIABLES e 100
11.3 DISPLAY ..o 100
11.4 FORMATS . ..ot 101
115 LEAVE . oo 101
11.6 MISSING VALUES . ..o, 102
11.7 MODIFY VARS ..o i 103
11.8 MR SETS . .ot 103
11.9 NUMERIC . . oo et 105
11.10 PRINT FORMATS ..o i 105
11.11 RENAME VARIABLES ... o 105
11.12 SORT VARIABLESt 105
11.13 VALUE LABELSo 106
1114 STRING .« 107
11.15 VARIABLE ATTRIBUTE i 107
11.16 VARIABLE LABELS . ..o 108
11.17 VARIABLE ALIGNMENT ... i 108
11.18 VARIABLE WIDTH ... 109
11.19 VARIABLE LEVEL 109
11.20 VARIABLE ROLE . ..o, 109
11.21 VECTOR ..o e 110
11.22 WRITE FORMATS ... o 110

12 Data transformations....................... 111
12,1 AGGREGATE. . ..o 111
12.2 AUTORECODE. . ..o i 114
12.3 COMPUTE ... o s 114
12.4 COUN T ..o st 115
12.5 B LIP o 116
12.6 TF o 117
12.7 RECODE ... 117
12.8 SORT CASES ..ottt 120

13 Selecting data for analysis.................. 121
13.1 FILTER ... e 121
13.2 N OF CASES . ..ot 121
13.3 SAMPLE . .ot 122
13.4 SELECT IF i 122
13.5 SPLIT FILE. 122
13.6 TEMPORARY ..ot 123

13.7 WEIGHT . ..o e 124

iv

14 Conditional and Looping Constructs...... 125

141 BREAK ... 125
14.2 DO IF .o 125
14.3 DO REPEAT e 125
14.4 LOOP ... 126
15 Statistics.......... ... 128
15.1 DESCRIPTIVES ... e 128
15.2 FREQUENCIES. ... e 129
15.3 EXAMINE ... 131
15.4 GRAPH 133
15.4.1 Scatterplot.ooii e 133
15.4.2 Histogramo 133
15.4.3 Bar Charto 134
15.5 CORRELATIONS e 134
15.6 CROSSTABS ... e 135
15.7 FACTOR . ..o e 138
15.8 GLM . 140
15.9 LOGISTIC REGRESSION. 141
1510 MEANS .o 142
15.11 NPAR TESTS. .. e 144
15.11.1 Binomial test ... 144
15.11.2 Chisquare Test.o 145
15.11.3 Cochran Q Test. ... 145
15.11.4 Friedman Test ... 145
15.11.5 Kendall’s W Test ... 145
15.11.6 Kolmogorov-Smirnov Test......... ...t 146
15.11.7 Kruskal-Wallis Test 146
15.11.8 Mann-Whitney U Test ..., 146
15.11.9 McNemar Test . ..o 147
15.11.10 Median Testo 147
15.11.11 Runs Test . oovovon o 147
15.11.12 Sign Test ... 147
15.11.13 Wilcoxon Matched Pairs Signed Ranks Test.......... 148
1512 T-TEST . 148
15.12.1 One Sample Mode 149
15.12.2 Independent Samples Mode 149
15.12.3 Paired Samples Mode........... ..o 149
15.13 ONEWAY . 150
15.14 QUICK CLUSTER ...« i 151
15.15 RANK Lo 151
15.16 REGRESSION e 152
15.16.1 SYMBax. .. oo ettt e 153
15.16.2 Examples.o 154
15.17 RELIABILITY ..o e 154

1518 ROC .. 155

16 Utilities.............. 157
16.1 ADD DOCUMENT 157
16.2 CACHE ... 157
16.3 G oo 157
16.4 COMMENTttt 157
16.5 DOCUMENT e 157
16.6 DISPLAY DOCUMENTS.o 158
16.7 DISPLAY FILELABEL, 158
16.8 DROP DOCUMENTSo 158
16.9 ECHO it 158
16.10 ERASE. ..ottt 158
16.11 EXECUTE ...ttt 158
16.12 FILE LABEL.o e 159
16.13 FINISH ... e 159
16.14 HOST ..o 159
16.15 INCLUDE......otttt it e 159
16.16 INSERT ..ottt e 159
16.17 OUTPUT ... e 160
16.18 PERMISSIONS 161
16.19 PRESERVE and RESTORE............................... 161
16.20 SET ... 161
16.21 SHOW ..o 168
16.22 SUBTITLE. e 169
16.23 TITLEo s 169

17 Invoking pspp-convert 170

18 Invoking pspp-dump-sav..................... 172

19 Not Implemented 173

20 Bugs ... 178
20.1 When to report bugs....... ..o 178
20.2 How toreport bugs...... ..o 178

21 Function Index.............................. 180

22 Command Index............................ 183

23 ConceptIndex.............................. 185

Appendix A GNU Free Documentation License
... 191

vi

Chapter 1: Introduction 2

1 Introduction

PSPP is a tool for statistical analysis of sampled data. It reads the data, analyzes the data
according to commands provided, and writes the results to a listing file, to the standard
output or to a window of the graphical display.

The language accepted by PSPP is similar to those accepted by SPSS statistical products.
The details of PsSPP’s language are given later in this manual.

PSPP produces tables and charts as output, which it can produce in several formats;
currently, ASCII, PostScript, PDF, HTML, and DocBook are supported.

The current version of PspP, 0.10.2-g654f1f, is incomplete in terms of its statistical pro-
cedure support. PSPP is a work in progress. The authors hope to fully support all features
in the products that PSPP replaces, eventually. The authors welcome questions, comments,
donations, and code submissions. See Chapter 20 [Submitting Bug Reports|, page 178, for
instructions on contacting the authors.

Chapter 2: Your rights and obligations 3

2 Your rights and obligations

PSPP is not in the public domain. It is copyrighted and there are restrictions on its distri-
bution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further
sharing any version of this program that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of PSPP,
that you receive source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of PSPP, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for pspp. If these programs are modified by someone else and passed on, we
want their recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise conditions of the license for Pspp are found in the GNU General Public
License. You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301 USA. This manual specifically is covered by the GNU Free
Documentation License (see Appendix A [GNU Free Documentation License|, page 191).

Chapter 3: Invoking pspp 4

3 Invoking pspp

PSPP has two separate user interfaces. This chapter describes pspp, PSPP’s command-line
driven text-based user interface. The following chapter briefly describes PSPPIRE, the
graphical user interface to PSPP.

The sections below describe the pspp program’s command-line interface.

3.1 Main Options

Here is a summary of all the options, grouped by type, followed by explanations in the same
order.

In the table, arguments to long options also apply to any corresponding short options.

Non-option arguments
syntax-file

Output options
-0, —-output=output-file
-0 option=value
-0 format=format
-0 device={terminall|listing}

-—no-output
-e, ——error-file=error-file
Language options
-I, --include=dir
-I-, --no-include
-b, —--batch
-i, ——interactive
-r, ——no-statrc
-a, ——algorithm={compatiblel|enhanced}
-x, --syntax={compatible|enhanced}

--syntax-encoding=encoding

Informational options

-h, --help

-V, —--version
Other options

-s, ——safer

--testing-mode

syntax-file Read and execute the named syntax file. If no syntax files are specified, PSPP
prompts for commands. If any syntax files are specified, PSPP by default exits
after it runs them, but you may make it prompt for commands by specifying
‘-’ as an additional syntax file.

-0 output-file
Write output to output-file. PSPP has several different output drivers that
support output in various formats (use --help to list the available formats).

Chapter 3: Invoking pspp)

Specify this option more than once to produce multiple output files, presumably
in different formats.

Use ‘=’ as output-file to write output to standard output.

If no -o option is used, then PSPP writes text and CSV output to standard
output and other kinds of output to whose name is based on the format, e.g.
pspp. pdf for PDF output.

-0 option=value

Sets an option for the output file configured by a preceding -o. Most options
are specific to particular output formats. A few options that apply generically
are listed below.

-0 format=format

PSPP uses the extension of the file name given on -o to select an output format.
Use this option to override this choice by specifying an alternate format, e.g.
-o pspp.out -0 html to write HTML to a file named pspp.out. Use --help
to list the available formats.

-0 device={terminal|listing}

Sets whether PSPP considers the output device configured by the preceding -o
to be a terminal or a listing device. This affects what output will be sent to
the device, as configured by the SET command’s output routing subcommands
(see Section 16.20 [SET], page 161). By default, output written to standard
output is considered a terminal device and other output is considered a listing
device.

--no-output

Disables output entirely, if neither —o nor -0 is also used. If one of those options
is used, —-no-output has no effect.

-e error-file
——error-file=error-file

-1 dir

Configures a file to receive PSPP error, warning, and note messages in plain
text format. Use ‘=’ as error-file to write messages to standard output. The
default error file is standard output in the absence of these options, but this is
suppressed if an output device writes to standard output (or another terminal),
to avoid printing every message twice. Use ‘none’ as error-file to explicitly

suppress the default.

—-include=dir

-I-

Appends dir to the set of directories searched by the INCLUDE (see Section 16.15
[INCLUDE], page 159) and INSERT (see Section 16.16 [INSERT], page 159)
commands.

—--no-include

Clears all directories from the include path, including directories inserted in
the include path by default. The default include path is . (the current direc-
tory), followed by .pspp in the user’s home directory, followed by PSPP’s system
configuration directory (usually /etc/pspp or /usr/local/etc/pspp).

Chapter 3: Invoking pspp 6

-b

--batch

-1

--interactive
These options forces syntax files to be interpreted in batch mode or interac-
tive mode, respectively, rather than the default “auto” mode. See Section 6.3
[Syntax Variants|, page 30, for a description of the differences.

-r

--no-statrc

Disables running rc at PSPP startup time.

-a {enhanced|compatible}
—--algorithm={enhanced|compatible}

With enhanced, the default, PSPP uses the best implemented algorithms for
statistical procedures. With compatible, however, PsPP will in some cases
use inferior algorithms to produce the same results as the proprietary program
SPSS.

Some commands have subcommands that override this setting on a per com-
mand basis.

-x {enhanced|compatible}
--syntax={enhanced|compatible}

With enhanced, the default, PSPP accepts its own extensions beyond those
compatible with the proprietary program SPSS. With compatible, PSPP rejects
syntax that uses these extensions.

--syntax-encoding=encoding

--help

-V
—--version

-s
—--safer

Specifies encoding as the encoding for syntax files named on the command
line. The encoding also becomes the default encoding for other syntax files
read during the PSPP session by the INCLUDE and INSERT commands. See
Section 16.16 [INSERT], page 159, for the accepted forms of encoding.

Prints a message describing PSPP command-line syntax and the available device
formats, then exits.

Prints a brief message listing PSPP’s version, warranties you don’t have, copying
conditions and copyright, and e-mail address for bug reports, then exits.

Disables certain unsafe operations. This includes the ERASE and HOST com-
mands, as well as use of pipes as input and output files.

--testing-mode

Invoke heuristics to assist with testing PSPp. For use by make check and similar
scripts.

Chapter 3: Invoking pspp 7

3.2 PDF, PostScript, and SVG Output Options

To produce output in PDF, PostScript, and SVG formats, specify —o file on the PSPP com-
mand line, optionally followed by any of the options shown in the table below to customize
the output format.

PDF, PostScript, and SVG output is only available if your installation of PSPP was
compiled with the Cairo library.

-0 format={pdf |ps|svg}
Specify the output format. This is only necessary if the file name given on -o
does not end in .pdf, .ps, or .svg.

-0 paper-size=paper-size
Paper size, as a name (e.g. a4, letter) or measurements (e.g. 210x297,
8.5x11in).

The default paper size is taken from the PAPERSIZE environment variable or the
file indicated by the PAPERCONF environment variable, if either variable is set.
If not, and your system supports the LC_PAPER locale category, then the default
paper size is taken from the locale. Otherwise, if /etc/papersize exists, the
default paper size is read from it. As a last resort, A4 paper is assumed.

-0 foreground-color=color

-0 background-color=color
Sets color as the color to be used for the background or foreground. Color should
be given in the format #RRRRGGGGBBBB, where RRRR, GGGG and BBBB are
4 character hexadecimal representations of the red, green and blue components
respectively.

-0 orientation=orientation
Either portrait or landscape. Default: portrait.

-0 left-margin=dimension

-0 right-margin=dimension

-0 top-margin=dimension

-0 bottom-margin=dimension
Sets the margins around the page. See below for the allowed forms of dimension
Default: 0.5in.

-0 prop-font=font-name

-0 emph-font=font-name

-0 fixed-font=font-name
Sets the font used for proportional, emphasized, or fixed-pitch text. Most sys-
tems support CSS-like font names such as “serif” and “monospace”, but a wide
range of system-specific font are likely to be supported as well.

Default: proportional font serif, emphasis font serif italic, fixed-pitch font
monospace.

-0 font-size=font-size
Sets the size of the default fonts, in thousandths of a point. Default: 10000 (10
point).

Chapter 3: Invoking pspp 8

-0 line-gutter=dimension
Sets the width of white space on either side of lines that border text or graphics
objects. Default: 1pt.

-0 line-spacing=dimension
Sets the spacing between the lines in a double line in a table. Default: 1pt.

-0 line-width=dimension
Sets the width of the lines used in tables. Default: 0.5pt.

Each dimension value above may be specified in various units based on its suffix: ‘mm’
for millimeters, ‘in’ for inches, or ‘pt’ for points. Lacking a suffix, numbers below 50 are
assumed to be in inches and those about 50 are assumed to be in millimeters.

3.3 Plain Text Output Options

PSPP can produce plain text output, drawing boxes using ASCII or Unicode line drawing
characters. To produce plain text output, specify -o file on the PSPP command line,
optionally followed by options from the table below to customize the output format.

Plain text output is encoded in UTF-8.

-0 format=txt
Specify the output format. This is only necessary if the file name given on -o
does not end in .txt or .list.

-0 charts={template.png|none}
Name for chart files included in output. The value should be a file name that
includes a single ‘#’ and ends in png. When a chart is output, the ‘#’ is replaced
by the chart number. The default is the file name specified on -o with the
extension stripped off and replaced by -#.png.

Specify none to disable chart output. Charts are always disabled if your instal-
lation of PSPP was compiled without the Cairo library.

-0 foreground-color=color

-0 background-color=color
Sets color as the color to be used for the background or foreground to be used
for charts. Color should be given in the format #RRRRGGGGBBBB, where RRRR,
GGGG and BBBB are 4 character hexadecimal representations of the red,
green and blue components respectively. If charts are disabled, this option has
no effect.

-0 paginate=boolean
If set, pPsPP writes an ASCII formfeed the end of every page. Default: off.

-0 headers=boolean
If enabled, PsPP prints two lines of header information giving title and subtitle,
page number, date and time, and PSPP version are printed at the top of every
page. These two lines are in addition to any top margin requested. Default:
off.

Chapter 3: Invoking pspp 9

-0 length=1line-count
Physical length of a page. Headers and margins are subtracted from this value.
You may specify the number of lines as a number, or for screen output you may
specify auto to track the height of the terminal as it changes. Default: 66.

-0 width=character-count
Width of a page, in characters. Margins are subtracted from this value. For
screen output you may specify auto in place of a number to track the width of
the terminal as it changes. Default: 79.

-0 top—margin=top-margin-lines
Length of the top margin, in lines. PSPP subtracts this value from the page
length. Default: 0.

-0 bottom-margin=bottom-margin-lines
Length of the bottom margin, in lines. PSPP subtracts this value from the page
length. Default: 0.

-0 box={asciilunicode}
Sets the characters used for lines in tables. If set to ascii the characters ‘-, ‘1’,
and ‘4’ for single-width lines and ‘=’ and ‘#’ for double-width lines are used. If
set to unicode then Unicode box drawing characters will be used. The default
is unicode if the locale’s character encoding is "UTF-8" or ascii otherwise.

-0 emphasis={none|bold|underline}
How to emphasize text. Bold and underline emphasis are achieved with over-
striking, which may not be supported by all the software to which you might
pass the output. Default: none.

3.4 HTML Output Options

To produce output in HT'ML format, specify —o file on the PSPP command line, optionally
followed by any of the options shown in the table below to customize the output format.

-0 format=html
Specify the output format. This is only necessary if the file name given on -o
does not end in .html.

-0 charts={template.png|none}
Sets the name used for chart files. See Section 3.3 [Plain Text Output Options|,
page 8, for details.

-0 borders=boolean
Decorate the tables with borders. If set to false, the tables produced will have
no borders. The default value is true.

-0 css=boolean
Use cascading style sheets. Cascading style sheets give an improved appearance
and can be used to produce pages which fit a certain web site’s style. The default
value is true.

Chapter 3: Invoking pspp 10

3.5 OpenDocument Output Options

To produce output as an OpenDocument text (ODT) document, specify -o file on the
pspPP command line. If file does not end in .odt, you must also specify -0 format=odt.

ODT support is only available if your installation of PSPP was compiled with the libxml2
library.

The OpenDocument output format does not have any configurable options.

3.6 Comma-Separated Value Output Options

To produce output in comma-separated value (CSV) format, specify o file on the PSPP
command line, optionally followed by any of the options shown in the table below to cus-
tomize the output format.

-0 format=csv
Specify the output format. This is only necessary if the file name given on -o
does not end in .csv.

-0 separator=field-separator
Sets the character used to separate fields. Default: a comma (*,’).

-0 quote=qualifier
Sets qualifier as the character used to quote fields that contain white space,
the separator (or any of the characters in the separator, if it contains more
than one character), or the quote character itself. If qualifier is longer than one
character, only the first character is used; if qualifier is the empty string, then
fields are never quoted.

-0 titles=boolean
Whether table titles (brief descriptions) should be printed. Default: on.

-0 captions=boolean
Whether table captions (more extensive descriptions) should be printed. De-
fault: on.

The CSV format used is an extension to that specified in RFC 4180:

Tables Each table row is output on a separate line, and each column is output as a
field. The contents of a cell that spans multiple rows or columns is output only
for the top-left row and column; the rest are output as empty fields.

Titles When a table has a title and titles are enabled, the title is output just above
the table as a single field prefixed by ‘Table:’.

Captions When a table has a caption and captions are enabled, the caption is output
just below the table as a single field prefixed by ‘Caption:’.

Footnotes Within a table, footnote markers are output as bracketed letters following the
cell’s contents, e.g. ‘[al’, ‘[b]’, ... The footnotes themselves are output fol-
lowing the body of the table, as a separate two-column table introduced with a
line that says ‘Footnotes:’. Each row in the table represent one footnote: the
first column is the marker, the second column is the text.

Chapter 3: Invoking pspp 11

Text Text in output is printed as a field on a line by itself. The TITLE and SUBTI-
TLE produce similar output, prefixed by ‘Title:’ or ‘Subtitle:’, respectively.

Messages Errors, warnings, and notes are printed the same way as text.
Charts Charts are not included in CSV output.

Successive output items are separated by a blank line.

Chapter 4: Invoking psppire 12

4 Invoking psppire

4.1 The graphic user interface

The PSPPIRE graphic user interface for PSPP can perform all functionality of the command
line interface. In addition it gives an instantaneous view of the data, variables and statistical
output.

The graphic user interface can be started by typing psppire at a command prompt.
Alternatively many systems have a system of interactive menus or buttons from which
psppire can be started by a series of mouse clicks.

Once the principles of the PSPP system are understood, the graphic user interface is
designed to be largely intuitive, and for this reason is covered only very briefly by this
manual.

Chapter 5: Using PSPP 13

5 Using PSPP

PSPP is a tool for the statistical analysis of sampled data. You can use it to discover patterns
in the data, to explain differences in one subset of data in terms of another subset and to
find out whether certain beliefs about the data are justified. This chapter does not attempt
to introduce the theory behind the statistical analysis, but it shows how such analysis can
be performed using PSPP.

For the purposes of this tutorial, it is assumed that you are using PSPP in its interactive
mode from the command line. However, the example commands can also be typed into a
file and executed in a post-hoc mode by typing ‘pspp filename’ at a shell prompt, where
filename is the name of the file containing the commands. Alternatively, from the graphical
interface, you can select File =+ New — Syntax to open a new syntax window and use the
Run menu when a syntax fragment is ready to be executed. Whichever method you choose,
the syntax is identical.

When using the interactive method, PSPP tells you that it’s waiting for your data with
a string like PSPP> or data>. In the examples of this chapter, whenever you see text like
this, it indicates the prompt displayed by PSPP, not something that you should type.

Throughout this chapter reference is made to a number of sample data files. So that
you can try the examples for yourself, you should have received these files along with your
copy of Pspp.!

Please note: Normally these files are installed in the directory
/usr/local/share/pspp/examples. If however your system administrator or
operating system vendor has chosen to install them in a different location, you
will have to adjust the examples accordingly.

5.1 Preparation of Data Files

Before analysis can commence, the data must be loaded into PSPP and arranged such that
both PspP and humans can understand what the data represents. There are two aspects of
data:

e The variables — these are the parameters of a quantity which has been measured or
estimated in some way. For example height, weight and geographic location are all
variables.

e The observations (also called ‘cases’) of the variables — each observation represents an
instance when the variables were measured or observed.

For example, a data set which has the variables height, weight, and name, might have the
observations:

1881 89.2 Ahmed
1192 107.01 Frank
1230 67 Julie

The following sections explain how to define a dataset.

I These files contain purely fictitious data. They should not be used for research purposes.

Chapter 5: Using PSPP 14

5.1.1 Defining Variables

Variables come in two basic types, viz: numeric and string. Variables such as age, height
and satisfaction are numeric, whereas name is a string variable. String variables are best
reserved for commentary data to assist the human observer. However they can also be used
for nominal or categorical data.

Example 5.1 defines two variables forename and height, and reads data into them by

manual input.

-

PSPP> data list list /forename (A12) height.
PSPP> begin data.

data> Ahmed 188

data> Bertram 167

data> Catherine 134.231

data> David 109.1

data> end data

PSPP>

N

J

Example 5.1: Manual entry of data using the DATA LIST command. Two variables

forename and height are defined and subsequently filled with manually entered data.

There are several things to note about this example.

e The words ‘data list list’ are an example of the DATA LIST command. See

Section 8.5 [DATA LIST], page 66. It tells PSPP to prepare for reading data. The
word ‘list’ intentionally appears twice. The first occurrence is part of the DATA LIST
call, whilst the second tells PsPP that the data is to be read as free format data with
one record per line.

The ¢/’ character is important. It marks the start of the list of variables which you
wish to define.

The text ‘forename’ is the name of the first variable, and ‘(A12)’ says that the variable
forename is a string variable and that its maximum length is 12 bytes. The second
variable’s name is specified by the text ‘height’. Since no format is given, this variable
has the default format. Normally the default format expects numeric data, which
should be entered in the locale of the operating system. Thus, the example is correct
for English locales and other locales which use a period (‘.’) as the decimal separator.
However if you are using a system with a locale which uses the comma (,’) as the
decimal separator, then you should in the subsequent lines substitute ‘.’ with °,’.
Alternatively, you could explicitly tell PsPP that the height variable is to be read
using a period as its decimal separator by appending the text ‘DOT8.3’ after the word
‘height’. For more information on data formats, see Section 6.7.4 [Input and Output
Formats], page 34.

Normally, PsPP displays the prompt PSPP> whenever it’s expecting a command. How-
ever, when it’s expecting data, the prompt changes to data> so that you know to enter
data and not a command.

At the end of every command there is a terminating ‘.’ which tells PSPP that the end
of a command has been encountered. You should not enter ‘.’ when data is expected

Chapter 5: Using PSPP 15

(ie. when the data> prompt is current) since it is appropriate only for terminating
commands.

5.1.2 Listing the data
Once the data has been entered, you could type
PSPP> 1ist /format=numbered.

to list the data. The optional text ‘/format=numbered’ requests the case numbers to be
shown along with the data. It should show the following output:

Case# forename height
1 Ahmed 188.00
2 Bertram 167.00
3 Catherine 134.23
4 David 109.10

Note that the numeric variable height is displayed to 2 decimal places, because the format
for that variable is ‘F8.2’. For a complete description of the LIST command, see Section 8.10
[LIST], page 76.

5.1.3 Reading data from a text file

The previous example showed how to define a set of variables and to manually enter the
data for those variables. Manual entering of data is tedious work, and often a file containing
the data will be have been previously prepared. Let us assume that you have a file called
mydata.dat containing the ascii encoded data:

Ahmed 188.00
Bertram 167.00
Catherine 134.23
David 109.10
Zachariah 113.02

You can can tell the DATA LIST command to read the data directly from this file instead of
by manual entry, with a command like:

PSPP> data list file=’mydata.dat’ list /forename (A12) height.

Notice however, that it is still necessary to specify the names of the variables and their
formats, since this information is not contained in the file. It is also possible to specify
the file’s character encoding and other parameters. For full details refer to see Section 8.5
[DATA LIST], page 66.

5.1.4 Reading data from a pre-prepared pspP file

When working with other PSPP users, or users of other software which uses the PSPp data
format, you may be given the data in a pre-prepared PsPP file. Such files contain not only
the data, but the variable definitions, along with their formats, labels and other meta-data.
Conventionally, these files (sometimes called “system” files) have the suffix .sav, but that
is not mandatory. The following syntax loads a file called my-file.sav.

Chapter 5: Using PSPP 16

PSPP> get file="my-file.sav’.

You will encounter several instances of this in future examples.

5.1.5 Saving data to a pspp file.

If you want to save your data, along with the variable definitions so that you or other pspp
users can use it later, you can do this with the SAVE command.

The following syntax will save the existing data and variables to a file called my-new-
file.sav.

PSPP> save outfile=’my-new-file.sav’.

If my-new-file.sav already exists, then it will be overwritten. Otherwise it will be created.

5.1.6 Reading data from other sources

Sometimes it’s useful to be able to read data from comma separated text, from spreadsheets,
databases or other sources. In these instances you should use the GET DATA command (see
Section 9.4 [GET DATA], page 83).

5.1.7 Exiting PSPP
Use the FINISH command to exit PSPP:

PSPP> finish.

5.2 Data Screening and Transformation

Once data has been entered, it is often desirable, or even necessary, to transform it in some
way before performing analysis upon it. At the very least, it’s good practice to check for
errors.

5.2.1 Identifying incorrect data

Data from real sources is rarely error free. PSPP has a number of procedures which can be
used to help identify data which might be incorrect.

The DESCRIPTIVES command (see Section 15.1 [DESCRIPTIVES], page 128) is used
to generate simple linear statistics for a dataset. It is also useful for identifying potential
problems in the data. The example file physiology.sav contains a number of physiological
measurements of a sample of healthy adults selected at random. However, the data entry
clerk made a number of mistakes when entering the data. Example 5.2 illustrates the use
of DESCRIPTIVES to screen this data and identify the erroneous values.

Chapter 5: Using PSPP 17

(7
PSPP> get file=’/usr/local/share/pspp/examples/physiology.sav’.
PSPP> descriptives sex, weight, height.
Output:
DESCRIPTIVES. Valid cases = 40; cases with missing value(s) = 0.
t——————— #-——+——— +o————— +o————— - +
|Variable# N| Mean |Std Dev|Minimum|Maximum|

H=== # # # # # =
mw mw mw m mw mw s

| sex #40 | .45] .50] .00| 1.00]|
|height #40|1677.12| 262.87| 179.00]/1903.00]
Iweight #40| 72.12| 26.70| -55.60| 92.07|

o $——t————— - e o +
_ J

Example 5.2: Using the DESCRIPTIVES command to display simple summary information
about the data. In this case, the results show unexpectedly low values in the Minimum
column, suggesting incorrect data entry.

In the output of Example 5.2, the most interesting column is the minimum value. The
weight variable has a minimum value of less than zero, which is clearly erroneous. Similarly,
the height variable’s minimum value seems to be very low. In fact, it is more than 5 standard
deviations from the mean, and is a seemingly bizarre height for an adult person. We can
examine the data in more detail with the EXAMINE command (see Section 15.3 [EXAMINE],
page 131):

In Example 5.3 you can see that the lowest value of height is 179 (which we suspect to be
erroneous), but the second lowest is 1598 which we know from the DESCRIPTIVES command
is within 1 standard deviation from the mean. Similarly the weight variable has a lowest
value which is negative but a plausible value for the second lowest value. This suggests that
the two extreme values are outliers and probably represent data entry errors.

Chapter 5: Using PSPP 18

~
[. .. continue from Example 5.2]

PSPP> examine height, weight /statistics=extreme(3).

Output:
#=== # =ff======= #
#Case Number| Value
#Height in millimetres Highest 1# 1411903.00#
24 151884 .00#
3# 12/1801.65#
#® —mmm—————= #-——— - +o————- #
Lowest 1# 30| 179.00#
2t 31]1598.00%#
3# 2811601.00#
#® —mmm—————= #——m - +o————- #
#Weight in kilograms Highest 1# 13| 92.07#
2# 5] 92.07#
3# 171 91.74#
#® mmmm————— #-—————— +o————- #
Lowest 1# 38| -55.60#
2# 39| b54.48#
3# 33| 55.45#
#

Example 5.3: Using the EXAMINE command to see the extremities of the data for different
variables. Cases 30 and 38 seem to contain values very much lower than the rest of the
data. They are possibly erroneous.

5.2.2 Dealing with suspicious data

If possible, suspect data should be checked and re-measured. However, this may not always
be feasible, in which case the researcher may decide to disregard these values. PSPP has
a feature whereby data can assume the special value ‘SYSMIS’, and will be disregarded
in future analysis. See Section 6.6 [Missing Observations|, page 32. You can set the two
suspect values to the ‘SYSMIS’ value using the RECODE command.

PSPP

> recode height (179 = SYSMIS).

PSPP

> recode weight (LOWEST THRU 0 = SYSMIS).

The first command says that for any observation which has a height value of 179, that
value should be changed to the SYSMIS value. The second command says that any weight
values of zero or less should be changed to SYSMIS. From now on, they will be ignored in
analysis. For detailed information about the RECODE command see Section 12.7 [RECODE],
page 117.

Chapter 5: Using PSPP 19

If you now re-run the DESCRIPTIVES or EXAMINE commands in Example 5.2 and
Example 5.3 you will see a data summary with more plausible parameters. You will also
notice that the data summaries indicate the two missing values.

5.2.3 Inverting negatively coded variables

Data entry errors are not the only reason for wanting to recode data. The sample file
hotel.sav comprises data gathered from a customer satisfaction survey of clients at a par-
ticular hotel. In Example 5.4, this file is loaded for analysis. The line display dictionary.
tells PSPP to display the variables and associated data. The output from this command has
been omitted from the example for the sake of clarity, but you will notice that each of the
variables v1, v2 ... v5 are measured on a 5 point Likert scale, with 1 meaning “Strongly
disagree” and 5 meaning “Strongly agree”. Whilst variables v1, v2 and v4 record responses
to a positively posed question, variables v3 and v5 are responses to negatively worded ques-
tions. In order to perform meaningful analysis, we need to recode the variables so that they
all measure in the same direction. We could use the RECODE command, with syntax such
as:

recode v3 (1 =5) (2 =4) (4=2) (6 =1).

However an easier and more elegant way uses the COMPUTE command (see Section 12.3
[COMPUTE], page 114). Since the variables are Likert variables in the range (1 ... 5),
subtracting their value from 6 has the effect of inverting them:

compute var = 6 - var.

Example 5.4 uses this technique to recode the variables v3 and v5. After applying COMPUTE
for both variables, all subsequent commands will use the inverted values.

5.2.4 Testing data consistency

A sensible check to perform on survey data is the calculation of reliability. This gives
the statistician some confidence that the questionnaires have been completed thoughtfully.
If you examine the labels of variables v1, v3 and v4, you will notice that they ask very
similar questions. One would therefore expect the values of these variables (after recoding)
to closely follow one another, and we can test that with the RELIABILITY command (see
Section 15.17 [RELIABILITY], page 154). Example 5.4 shows a PSPP session where the
user (after recoding negatively scaled variables) requests reliability statistics for v1, v3 and
v4.

Chapter 5: Using PSPP 20

-
PSPP> get file=’/usr/local/share/pspp/examples/hotel.sav’.
PSPP> display dictionary.

PSPP> * recode negatively worded questions.

PSPP> compute v3 = 6 - v3.

PSPP> compute v5 = 6 - v5.

PSPP> reliability vi, v3, v4.

Output (dictionary information omitted for clarity):

1.1 RELIABILITY. Case Processing Summary
N| ho#
#=== ==ff==# #
#Cases Valid #17/100.00#
Excluded# Ol .00#
Total #17]100.00#

1.2 RELIABILITY. Reliability Statistics

H H H
1 H 1

#Cronbach’s Alpha#N of Items#
H=== H# #
.81# 3#
H=== # ==#
-

Example 5.4: Recoding negatively scaled variables, and testing for reliability with the
RELIABILITY command. The Cronbach Alpha coefficient suggests a high degree of reliability
among variables v1, v3 and v4.

As a rule of thumb, many statisticians consider a value of Cronbach’s Alpha of 0.7 or
higher to indicate reliable data. Here, the value is 0.81 so the data and the recoding that
we performed are vindicated.

5.2.5 Testing for normality

Many statistical tests rely upon certain properties of the data. One common property, upon
which many linear tests depend, is that of normality — the data must have been drawn
from a normal distribution. It is necessary then to ensure normality before deciding upon
the test procedure to use. One way to do this uses the EXAMINE command.

In Example 5.5, a researcher was examining the failure rates of equipment produced by
an engineering company. The file repairs.sav contains the mean time between failures
(mtbf) of some items of equipment subject to the study. Before performing linear analysis
on the data, the researcher wanted to ascertain that the data is normally distributed.

A normal distribution has a skewness and kurtosis of zero. Looking at the skewness
of mtbf in Example 5.5 it is clear that the mtbf figures have a lot of positive skew and
are therefore not drawn from a normally distributed variable. Positive skew can often be

Chapter 5: Using PSPP 21

compensated for by applying a logarithmic transformation. This is done with the COMPUTE
command in the line

compute mtbf_ln = 1ln (mtbf).

Rather than redefining the existing variable, this use of COMPUTE defines a new variable
mtbf_In which is the natural logarithm of mtbf. The final command in this example calls
EXAMINE on this new variable, and it can be seen from the results that both the skewness
and kurtosis for mtbf_In are very close to zero. This provides some confidence that the
mtbf_In variable is normally distributed and thus safe for linear analysis. In the event that
no suitable transformation can be found, then it would be worth considering an appropriate
non-parametric test instead of a linear one. See Section 15.11 [NPAR TESTS], page 144,
for information about non-parametric tests.

Chapter 5: Using PSPP 22
(" N
PSPP> get file=’/usr/local/share/pspp/examples/repairs.sav’.
PSPP> examine mtbf

/statistics=descriptives.
PSPP> compute mtbf_ln = 1n (mtbf).
PSPP> examine mtbf_1n

/statistics=descriptives.

Output:

1.2 EXAMINE. Descriptives
#Statistic|Std. Error#
#=== # # ==#
#mtbf Mean # 8.32 | 1.62 #
95% Confidence Interval for Mean Lower Bound# 4.85 |
Upper Bound# 11.79 |
5% Trimmed Mean # 7.69 |
Median # 8.12 |
Variance # 39.21 |
Std. Deviation # 6.26 |
Minimum # 1.63 |
Maximum # 26.47 |
Range # 24.84 |
Interquartile Range # 5.83 |
Skewness # 1.85 | .58
Kurtosis # 4.49 | 1.12
#=== ==#= # ==#
2.2 EXAMINE. Descriptives
#Statistic|Std. Error#
#=== ==#= # ==#
#mtbf_1ln Mean # 1.88 | .19 #
95% Confidence Interval for Mean Lower Bound# 1.47 |
Upper Bound# 2.29 |
5% Trimmed Mean # 1.88 |
Median # 2.09 |
Variance # .54 I
Std. Deviation # .74 |
Minimum # .49 |
Maximum # 3.28 |
Range # 2.79 |
Interquartile Range # .92 |
Skewness # -.16 | .58
Kurtosis # -.09 | 1.12
\w N N Tr)

Example 5.5: Testing for normality using the EXAMINE command and applying a logarith-
mic transformation. The mtbf variable has a large positive skew and is therefore unsuitable
for linear statistical analysis. However the transformed variable (mtbf_In) is close to normal

and would appear to be more suitable.

Chapter 5: Using PSPP 23

5.3 Hypothesis Testing

One of the most fundamental purposes of statistical analysis is hypothesis testing. Re-
searchers commonly need to test hypotheses about a set of data. For example, she might
want to test whether one set of data comes from the same distribution as another, or whether
the mean of a dataset significantly differs from a particular value. This section presents just
some of the possible tests that pspp offers.

The researcher starts by making a null hypothesis. Often this is a hypothesis which he
suspects to be false. For example, if he suspects that A is greater than B he will state the
null hypothesis as A = B.2

The p-value is a recurring concept in hypothesis testing. It is the highest acceptable
probability that the evidence implying a null hypothesis is false, could have been obtained
when the null hypothesis is in fact true. Note that this is not the same as “the probability
of making an error” nor is it the same as “the probability of rejecting a hypothesis when it
is true”.

5.3.1 Testing for differences of means

A common statistical test involves hypotheses about means. The T-TEST command is used
to find out whether or not two separate subsets have the same mean.

Example 5.6 uses the file physiology.sav previously encountered. A researcher sus-
pected that the heights and core body temperature of persons might be different depending
upon their sex. To investigate this, he posed two null hypotheses:

e The mean heights of males and females in the population are equal.

e The mean body temperature of males and females in the population are equal.

For the purposes of the investigation the researcher decided to use a p-value of 0.05.

In addition to the T-test, the T-TEST command also performs the Levene test for equal
variances. If the variances are equal, then a more powerful form of the T-test can be
used. However if it is unsafe to assume equal variances, then an alternative calculation is
necessary. PSPP performs both calculations.

For the height variable, the output shows the significance of the Levene test to be 0.33
which means there is a 33% probability that the Levene test produces this outcome when
the variances are equal. Had the significance been less than 0.05, then it would have been
unsafe to assume that the variances were equal. However, because the value is higher than
0.05 the homogeneity of variances assumption is safe and the “Equal Variances” row (the
more powerful test) can be used. Examining this row, the two tailed significance for the
height t-test is less than 0.05, so it is safe to reject the null hypothesis and conclude that
the mean heights of males and females are unequal.

For the temperature variable, the significance of the Levene test is 0.58 so again, it is
safe to use the row for equal variances. The equal variances row indicates that the two
tailed significance for temperature is 0.20. Since this is greater than 0.05 we must reject
the null hypothesis and conclude that there is insufficient evidence to suggest that the body
temperature of male and female persons are different.

2 This example assumes that it is already proven that B is not greater than A.

Chapter 5: Using PSPP 24

e N

PSPP> get file=’/usr/local/share/pspp/examples/physiology.sav’.

PSPP> recode height (179 = SYSMIS).

PSPP> t-test group=sex(0,1) /variables = height temperature.
Output:

1.1 T-TEST. Group Statistics

H#=== f==f======= === ==# #

sex | N| Mean |Std. Deviation|SE. Mean#

#=== H==H # # #

#height Male [22]1796.49]| 49.71| 10.60#

Female|1711610.77| 25.43] 6.17#

#temperature Male [22]| 36.68]| 1.95] 424

Female|18| 37.43]| 1.61] .38#

1.2 T-TEST. Independent Samples Test

=#
Levene’s| t-test for Equality of Means
o o= o pommm +- -
| | | | | |
| | | Isig. 2| |
F |Sig.| t | df |tailed|Mean Diff|
#=== # # # H=====ff====== # # =#
#height Equal variances# .97| .33| 14.02|37.00] .00 185.72| #
Unequal variances# | | 15.15(32.71] .00 185.72| ...
#temperature Equal variances# .31| .58| -1.31/38.00] .20] -.75| ... #
Unequal variances# | | -1.33137.99]| .19] -.75|
H=====ff=== # # =#
- J

Example 5.6: The T-TEST command tests for differences of means. Here, the height
variable’s two tailed significance is less than 0.05, so the null hypothesis can be rejected.
Thus, the evidence suggests there is a difference between the heights of male and female
persons. However the significance of the test for the temperature variable is greater than
0.05 so the null hypothesis cannot be rejected, and there is insufficient evidence to suggest
a difference in body temperature.

5.3.2 Linear Regression

Linear regression is a technique used to investigate if and how a variable is linearly related
to others. If a variable is found to be linearly related, then this can be used to predict
future values of that variable.

In example Example 5.7, the service department of the company wanted to be able to
predict the time to repair equipment, in order to improve the accuracy of their quotations.
It was suggested that the time to repair might be related to the time between failures and
the duty cycle of the equipment. The p-value of 0.1 was chosen for this investigation. In
order to investigate this hypothesis, the REGRESSION command was used. This command

Chapter 5: Using PSPP 25

not only tests if the variables are related, but also identifies the potential linear relationship.
See Section 15.16 [REGRESSION], page 152.

Chapter 5: Using PSPP 26

()
PSPP> get file=’/usr/local/share/pspp/examples/repairs.sav’.
PSPP> regression /variables = mtbf duty_cycle /dependent = mttr.
PSPP> regression /variables = mtbf /dependent = mttr.

Output:
1.3(1) REGRESSION. Coefficients
H#=== H#====f=== ff====ff===== #
B |Std. Error|Betal t
| (Constant) #9.81] 1.50] .00| 6.54#
|[Mean time between failures (months) #3.10] .10 .99132.43#
|[Ratio of working to non-working time#1.09]| 1.78] .02| .61#
I # I | |
1.3(2) REGRESSION. Coefficients
#=== # ====¢#
#Significance#
| (Constant) # .10#
|[Mean time between failures (months) # .00#
|[Ratio of working to non-working time# .55#
| #
2.3(1) REGRESSION. Coefficients
f#}== #===== H#=== ff====ff===== #
B |Std. Error|Betal t
==ff===== #=== ff====ff=====
| (Constant) #10.50] .96| .00/10.96#
|[Mean time between failures (months)# 3.11] .09 .99133.39#
| # | | |
H#=====f=== # H#=====
2.3(2) REGRESSION. Coefficients
#Significance#
#=== # # ===#
| (Constant) # .06#
|[Mean time between failures (months)# .00#
| #
==# ===
N J

Example 5.7: Linear regression analysis to find a predictor for mttr. The first attempt,
including duty_cycle, produces some unacceptable high significance values. However the
second attempt, which excludes duty_cycle, produces significance values no higher than
0.06. This suggests that mtbf alone may be a suitable predictor for mttr.

Chapter 5: Using PSPP 27

The coefficients in the first table suggest that the formula mttr = 9.81 4+ 3.1 x mtbf +
1.09 x duty_cycle can be used to predict the time to repair. However, the significance value
for the duty_cycle coeflicient is very high, which would make this an unsafe predictor. For
this reason, the test was repeated, but omitting the duty_cycle variable. This time, the
significance of all coefficients no higher than 0.06, suggesting that at the 0.06 level, the
formula mttr = 10.5 4+ 3.11 x mtbf is a reliable predictor of the time to repair.

Chapter 6: The PSPP language 28

6 The PsSPP language

This chapter discusses elements common to many PSPP commands. Later chapters will
describe individual commands in detail.

6.1 Tokens

PSPP divides most syntax file lines into series of short chunks called tokens. Tokens are then
grouped to form commands, each of which tells PSPP to take some action—read in data,
write out data, perform a statistical procedure, etc. Each type of token is described below.

Identifiers Identifiers are names that typically specify variables, commands, or subcom-

Keywords

Numbers

Strings

mands. The first character in an identifier must be a letter, ‘#’, or ‘@. The
remaining characters in the identifier must be letters, digits, or one of the fol-
lowing special characters:

_$#o

Identifiers may be any length, but only the first 64 bytes are significant. Iden-
tifiers are not case-sensitive: foobar, Foobar, FooBar, FOOBAR, and FoObaR are
different representations of the same identifier.

Some identifiers are reserved. Reserved identifiers may not be used in any con-
text besides those explicitly described in this manual. The reserved identifiers
are:

ALL AND BY EQ GE GT LE LT NE NOT OR TO WITH

Keywords are a subclass of identifiers that form a fixed part of command syntax.
For example, command and subcommand names are keywords. Keywords may
be abbreviated to their first 3 characters if this abbreviation is unambiguous.
(Unique abbreviations of 3 or more characters are also accepted: ‘FRE’, ‘FREQ’,
and ‘FREQUENCIES’ are equivalent when the last is a keyword.)

Reserved identifiers are always used as keywords. Other identifiers may be used
both as keywords and as user-defined identifiers, such as variable names.

Numbers are expressed in decimal. A decimal point is optional. Numbers may
be expressed in scientific notation by adding ‘e’ and a base-10 exponent, so that
‘1.234e3’ has the value 1234. Here are some more examples of valid numbers:

-5 3.14159265359 1e100 -.707 8945.

Negative numbers are expressed with a ‘=’ prefix. However, in situations where
a literal ‘-’ token is expected, what appears to be a negative number is treated
as ‘=’ followed by a positive number.

No white space is allowed within a number token, except for horizontal white
space between ‘-’ and the rest of the number.

The last example above, ‘8945.” will be interpreted as two tokens, ‘8945’ and
.7, if it is the last token on a line. See Section 6.2 [Forming commands of

tokens], page 29.

Strings are literal sequences of characters enclosed in pairs of single quotes (‘*”)
or double quotes (‘"’). To include the character used for quoting in the string,

Chapter 6: The PSPP language 29

double it, e.g. ‘’it’’s an apostrophe’’. White space and case of letters are
significant inside strings.

Strings can be concatenated using ‘+’, so that ‘"a" + b’ + ’¢’’ is equivalent

to “?abc’’. So that a long string may be broken across lines, a line break may
precede or follow, or both precede and follow, the ‘+’. (However, an entirely
blank line preceding or following the ‘+’ is interpreted as ending the current
command.)

Strings may also be expressed as hexadecimal character values by prefixing
the initial quote character by ‘x’ or ‘X’. Regardless of the syntax file or ac-
tive dataset’s encoding, the hexadecimal digits in the string are interpreted as
Unicode characters in UTF-8 encoding.

Individual Unicode code points may also be expressed by specifying the hex-
adecimal code point number in single or double quotes preceded by ‘u’ or ‘U’.
For example, Unicode code point U+1D11E, the musical G clef character, could
be expressed as U’1D11E’. Invalid Unicode code points (above U+10FFFF or
in between U+D800 and U+DFFF) are not allowed.

When strings are concatenated with ‘+’; each segment’s prefix is considered
individually. For example, ’The G clef symbol is:’ +u"1dlle" + "." inserts
a G clef symbol in the middle of an otherwise plain text string.

Punctuators and Operators
These tokens are the punctuators and operators:

/= () + - %/ %k < <=<>>>= "=§ |

s’

Most of these appear within the syntax of commands, but the period (*‘.”)
punctuator is used only at the end of a command. It is a punctuator only as
the last character on a line (except white space). When it is the last non-space
character on a line, a period is not treated as part of another token, even if it
would otherwise be part of, e.g., an identifier or a floating-point number.

6.2 Forming commands of tokens

Most PSPP commands share a common structure. A command begins with a command
name, such as FREQUENCIES, DATA LIST, or N OF CASES. The command name may be ab-
breviated to its first word, and each word in the command name may be abbreviated to its
first three or more characters, where these abbreviations are unambiguous.

The command name may be followed by one or more subcommands. Each subcommand
begins with a subcommand name, which may be abbreviated to its first three letters. Some
subcommands accept a series of one or more specifications, which follow the subcommand
name, optionally separated from it by an equals sign (‘=). Specifications may be separated
from each other by commas or spaces. Each subcommand must be separated from the next
(if any) by a forward slash (/).

There are multiple ways to mark the end of a command. The most common way is to
end the last line of the command with a period (‘.”) as described in the previous section
(see Section 6.1 [Tokens|, page 28). A blank line, or one that consists only of white space

or comments, also ends a command.

Chapter 6: The PSPP language 30

6.3 Syntax Variants

There are three variants of command syntax, which vary only in how they detect the end
of one command and the start of the next.

In interactive mode, which is the default for syntax typed at a command prompt, a
period as the last non-blank character on a line ends a command. A blank line also ends a
command.

In batch mode, an end-of-line period or a blank line also ends a command. Additionally,
it treats any line that has a non-blank character in the leftmost column as beginning a new
command. Thus, in batch mode the second and subsequent lines in a command must be
indented.

Regardless of the syntax mode, a plus sign, minus sign, or period in the leftmost column
of a line is ignored and causes that line to begin a new command. This is most useful in
batch mode, in which the first line of a new command could not otherwise be indented, but
it is accepted regardless of syntax mode.

The default mode for reading commands from a file is auto mode. It is the same as
batch mode, except that a line with a non-blank in the leftmost column only starts a new
command if that line begins with the name of a PSPP command. This correctly interprets
most valid PSPP syntax files regardless of the syntax mode for which they are intended.

The --interactive (or -i) or —-batch (or -b) options set the syntax mode for files
listed on the PsPP command line. See Section 3.1 [Main Options], page 4, for more details.

6.4 Types of Commands

Commands in PsPP are divided roughly into six categories:

Utility commands
Set or display various global options that affect PSPP operations. May appear
anywhere in a syntax file. See Chapter 16 [Utility commands|, page 157.

File definition commands
Give instructions for reading data from text files or from special binary “system
files”. Most of these commands replace any previous data or variables with new
data or variables. At least one file definition command must appear before the
first command in any of the categories below. See Chapter 8 [Data Input and
Output], page 64.

Input program commands
Though rarely used, these provide tools for reading data files in arbitrary textual
or binary formats. See Section 8.9 [INPUT PROGRAM], page 73.

Transformations
Perform operations on data and write data to output files. Transformations are
not carried out until a procedure is executed.

Restricted transformations
Transformations that cannot appear in certain contexts. See Section 6.5 [Order
of Commands]|, page 31, for details.

Chapter 6: The PSPP language 31

Procedures
Analyze data, writing results of analyses to the listing file. Cause transforma-
tions specified earlier in the file to be performed. In a more general sense, a
procedure is any command that causes the active dataset (the data) to be read.

6.5 Order of Commands

PSPP does not place many restrictions on ordering of commands. The main restriction is
that variables must be defined before they are otherwise referenced. This section describes
the details of command ordering, but most users will have no need to refer to them.

PSPP possesses five internal states, called initial, input-program file-type, transformation,
and procedure states. (Please note the distinction between the INPUT PROGRAM and FILE
TYPE commands and the input-program and file-type states.)

PSPP starts in the initial state. Each successful completion of a command may cause a

state transition. Each type of command has its own rules for state transitions:
Utility commands

e Valid in any state.

e Do not cause state transitions. Exception: when N OF CASES is executed in

the procedure state, it causes a transition to the transformation state.

DATA LIST

e Valid in any state.

e When executed in the initial or procedure state, causes a transition to the
transformation state.

e C(lears the active dataset if executed in the procedure or transformation
state.
INPUT PROGRAM
e Invalid in input-program and file-type states.
e Causes a transition to the intput-program state.
e Clears the active dataset.

FILE TYPE
e Invalid in intput-program and file-type states.
e Causes a transition to the file-type state.
e Clears the active dataset.
Other file definition commands
e Invalid in input-program and file-type states.
e Cause a transition to the transformation state.
e Clear the active dataset, except for ADD FILES, MATCH FILES, and UPDATE.
Transformations
e Invalid in initial and file-type states.
e Cause a transition to the transformation state.

Restricted transformations
e Invalid in initial, input-program, and file-type states.

Chapter 6: The PSPP language 32

e Cause a transition to the transformation state.

Procedures
e Invalid in initial, input-program, and file-type states.

e Cause a transition to the procedure state.

6.6 Handling missing observations

PSPP includes special support for unknown numeric data values. Missing observations are
assigned a special value, called the system-missing value. This “value” actually indicates the
absence of a value; it means that the actual value is unknown. Procedures automatically
exclude from analyses those observations or cases that have missing values. Details of
missing value exclusion depend on the procedure and can often be controlled by the user;
refer to descriptions of individual procedures for details.

The system-missing value exists only for numeric variables. String variables always have
a defined value, even if it is only a string of spaces.

Variables, whether numeric or string, can have designated user-missing values. Every
user-missing value is an actual value for that variable. However, most of the time user-
missing values are treated in the same way as the system-missing value.

For more information on missing values, see the following sections: Section 6.7 [Datasets],
page 32, Section 11.6 [MISSING VALUES], page 102, Chapter 7 [Expressions|, page 46. See
also the documentation on individual procedures for information on how they handle missing
values.

6.7 Datasets

pspp works with data organized into datasets. A dataset consists of a set of variables, which
taken together are said to form a dictionary, and one or more cases, each of which has one
value for each variable.

At any given time PSPP has exactly one distinguished dataset, called the active dataset.
Most PsPP commands work only with the active dataset. In addition to the active dataset,
PSPP also supports any number of additional open datasets. The DATASET commands can
choose a new active dataset from among those that are open, as well as create and destroy
datasets (see Section 8.4 [DATASET], page 65).

The sections below describe variables in more detail.

6.7.1 Attributes of Variables
Each variable has a number of attributes, including:

Name An identifier, up to 64 bytes long. Each variable must have a different name.
See Section 6.1 [Tokens], page 28.

Some system variable names begin with ‘$’, but user-defined variables’ names
may not begin with ‘$’.

The final character in a variable name should not be ‘.’, because such an iden-
tifier will be misinterpreted when it is the final token on a line: FOO. will be
divided into two separate tokens, ‘FO0’ and ‘.’, indicating end-of-command. See
Section 6.1 [Tokens|, page 28.

Chapter 6: The PSPP language 33

The final character in a variable name should not be ‘_’, because some such

identifiers are used for special purposes by PSPP procedures.

As with all pspP identifiers, variable names are not case-sensitive. PSPP capi-
talizes variable names on output the same way they were capitalized at their
point of definition in the input.

Type Numeric or string.

Width (string variables only) String variables with a width of 8 characters or fewer
are called short string variables. Short string variables may be used in a few
contexts where long string variables (those with widths greater than 8) are not
allowed.

Position ~ Variables in the dictionary are arranged in a specific order. DISPLAY can be
used to show this order: see Section 11.3 [DISPLAY], page 100.

Initialization
Either reinitialized to 0 or spaces for each case, or left at its existing value. See
Section 11.5 [LEAVE], page 101.

Missing values

Optionally, up to three values, or a range of values, or a specific value plus a
range, can be specified as user-missing values. There is also a system-missing
value that is assigned to an observation when there is no other obvious value for
that observation. Observations with missing values are automatically excluded
from analyses. User-missing values are actual data values, while the system-
missing value is not a value at all. See Section 6.6 [Missing Observations],
page 32.

Variable label
A string that describes the variable. See Section 11.16 [VARIABLE LABELS],
page 108.

Value label
Optionally, these associate each possible value of the variable with a string. See
Section 11.13 [VALUE LABELS], page 106.

Print format
Display width, format, and (for numeric variables) number of decimal places.
This attribute does not affect how data are stored, just how they are displayed.
Example: a width of 8, with 2 decimal places. See Section 6.7.4 [Input and
Output Formats|, page 34.

Write format
Similar to print format, but used by the WRITE command (see Section 8.17
[WRITE], page 80).

Custom attributes
User-defined associations between names and values. See Section 11.15 [VARI-
ABLE ATTRIBUTE], page 107.

Role The intended role of a variable for use in dialog boxes in graphical user inter-
faces. See Section 11.20 [VARIABLE ROLE], page 109.

Chapter 6: The PSPP language 34

6.7.2 Variables Automatically Defined by pspp

There are seven system variables. These are not like ordinary variables because system
variables are not always stored. They can be used only in expressions. These system
variables, whose values and output formats cannot be modified, are described below.

$CASENUM Case number of the case at the moment. This changes as cases are shuffled
around.

$DATE Date the PSPP process was started, in format A9, following the pattern DD MMM
YY.

$JDATE Number of days between 15 Oct 1582 and the time the PSPP process was started.
$LENGTH Page length, in lines, in format F11.
$SYSMIS System missing value, in format F1.

$TIME Number of seconds between midnight 14 Oct 1582 and the time the active
dataset was read, in format F20.

$WIDTH Page width, in characters, in format F3.

6.7.3 Lists of variable names

To refer to a set of variables, list their names one after another. Optionally, their names
may be separated by commas. To include a range of variables from the dictionary in the
list, write the name of the first and last variable in the range, separated by TO. For instance,
if the dictionary contains six variables with the names ID, X1, X2, GOAL, MET, and NEXTGOAL,
in that order, then X2 TO MET would include variables X2, GOAL, and MET.

Commands that define variables, such as DATA LIST, give TO an alternate meaning. With
these commands, TO define sequences of variables whose names end in consecutive integers.
The syntax is two identifiers that begin with the same root and end with numbers, separated
by TO. The syntax X1 TO X5 defines 5 variables, named X1, X2, X3, X4, and X5. The
syntax ITEMO0O08 TO ITEMOO13 defines 6 variables, named ITEM0O008, ITEMO009, ITEM0O010,
ITEMOO11, ITEM0012, and ITEMO0013. The syntaxes QUES001 TO QUES9 and QUES6 TO QUES3
are invalid.

After a set of variables has been defined with DATA LIST or another command with this
method, the same set can be referenced on later commands using the same syntax.

6.7.4 Input and Output Formats

An input format describes how to interpret the contents of an input field as a number or
a string. It might specify that the field contains an ordinary decimal number, a time or
date, a number in binary or hexadecimal notation, or one of several other notations. Input
formats are used by commands such as DATA LIST that read data or syntax files into the
PSPP active dataset.

Every input format corresponds to a default output format that specifies the formatting
used when the value is output later. It is always possible to explicitly specify an output
format that resembles the input format. Usually, this is the default, but in cases where the
input format is unfriendly to human readability, such as binary or hexadecimal formats, the
default output format is an easier-to-read decimal format.

Chapter 6: The PSPP language 35

Every variable has two output formats, called its print format and write format. Print
formats are used in most output contexts; write formats are used only by WRITE (see
Section 8.17 [WRITE], page 80). Newly created variables have identical print and write
formats, and FORMATS, the most commonly used command for changing formats (see
Section 11.4 [FORMATS], page 101), sets both of them to the same value as well. Thus,
most of the time, the distinction between print and write formats is unimportant.

Input and output formats are specified to PSPP with a format specification of the form
TYPEw or TYPEw.d, where TYPE is one of the format types described later, w is a field
width measured in columns, and d is an optional number of decimal places. If d is omitted,
a value of 0 is assumed. Some formats do not allow a nonzero d to be specified.

The following sections describe the input and output formats supported by PSPP.

6.7.4.1 Basic Numeric Formats

The basic numeric formats are used for input and output of real numbers in standard or
scientific notation. The following table shows an example of how each format displays
positive and negative numbers with the default decimal point setting:

Format 3141.59 -3141.59
F8.2 3141.59 -3141.59
COMMA9.2 3,141.59 -3,141.59
DOT9.2 3.141,59 -3.141,59
DOLLAR10.2 $3,141.59 -$3,141.59
PCT9.2 3141.59Y% -3141.59%
ES8.1 3.1E+003 -3.1E+003

On output, numbers in F format are expressed in standard decimal notation with the
requested number of decimal places. The other formats output some variation on this style:

e Numbers in COMMA format are additionally grouped every three digits by inserting
a grouping character. The grouping character is ordinarily a comma, but it can be
changed to a period (see [SET DECIMALJ, page 163).

e DOT format is like COMMA format, but it interchanges the role of the decimal point
and grouping characters. That is, the current grouping character is used as a decimal
point and vice versa.

e DOLLAR format is like COMMA format, but it prefixes the number with ‘$’.
e PCT format is like F format, but adds ‘%’ after the number.

e The E format always produces output in scientific notation.

On input, the basic numeric formats accept positive and numbers in standard decimal
notation or scientific notation. Leading and trailing spaces are allowed. An empty or all-
spaces field, or one that contains only a single period, is treated as the system missing
value.

In scientific notation, the exponent may be introduced by a sign (‘+’ or ‘=’), or by one of
the letters ‘e’ or ‘d’ (in uppercase or lowercase), or by a letter followed by a sign. A single
space may follow the letter or the sign or both.

Chapter 6: The PSPP language 36

On fixed-format DATA LIST (see Section 8.5.1 [DATA LIST FIXED], page 66) and in a
few other contexts, decimals are implied when the field does not contain a decimal point.
In F6.5 format, for example, the field 314159 is taken as the value 3.14159 with implied
decimals. Decimals are never implied if an explicit decimal point is present or if scientific
notation is used.

E and F formats accept the basic syntax already described. The other formats allow
some additional variations:

e COMMA, DOLLAR, and DOT formats ignore grouping characters within the integer
part of the input field. The identity of the grouping character depends on the format.

e DOLLAR format allows a dollar sign to precede the number. In a negative number,
the dollar sign may precede or follow the minus sign.

e PCT format allows a percent sign to follow the number.

All of the basic number formats have a maximum field width of 40 and accept no more
than 16 decimal places, on both input and output. Some additional restrictions apply:

e Asinput formats, the basic numeric formats allow no more decimal places than the field
width. As output formats, the field width must be greater than the number of decimal
places; that is, large enough to allow for a decimal point and the number of requested
decimal places. DOLLAR and PCT formats must allow an additional column for ‘$’
or ‘%’.

e The default output format for a given input format increases the field width enough to
make room for optional input characters. If an input format calls for decimal places,
the width is increased by 1 to make room for an implied decimal point. COMMA,
DOT, and DOLLAR formats also increase the output width to make room for grouping
characters. DOLLAR and PCT further increase the output field width by 1 to make
room for ‘¢’ or ‘%’. The increased output width is capped at 40, the maximum field
width.

e The E format is exceptional. For output, E format has a minimum width of 7 plus the
number of decimal places. The default output format for an E input format is an E
format with at least 3 decimal places and thus a minimum width of 10.

More details of basic numeric output formatting are given below:

e Output rounds to nearest, with ties rounded away from zero. Thus, 2.5 is output as 3
in F1.0 format, and -1.125 as -1.13 in F5.1 format.

e The system-missing value is output as a period in a field of spaces, placed in the
decimal point’s position, or in the rightmost column if no decimal places are requested.
A period is used even if the decimal point character is a comma.

e A number that does not fill its field is right-justified within the field.

e A number is too large for its field causes decimal places to be dropped to make room.
If dropping decimals does not make enough room, scientific notation is used if the field
is wide enough. If a number does not fit in the field, even in scientific notation, the
overflow is indicated by filling the field with asterisks (‘*’).

e COMMA, DOT, and DOLLAR formats insert grouping characters only if space is
available for all of them. Grouping characters are never inserted when all decimal
places must be dropped. Thus, 1234.56 in COMMAJ5.2 format is output as ‘ 1235’

Chapter 6: The PSPP language 37

without a comma, even though there is room for one, because all decimal places were
dropped.

e DOLLAR or PCT format drop the ‘$’ or ‘%’ only if the number would not fit at all
without it. Scientific notation with ‘$’ or ‘%’ is preferred to ordinary decimal notation
without it.

e Except in scientific notation, a decimal point is included only when it is followed by
a digit. If the integer part of the number being output is 0, and a decimal point is
included, then the zero before the decimal point is dropped.

In scientific notation, the number always includes a decimal point, even if it is not
followed by a digit.

e A negative number includes a minus sign only in the presence of a nonzero digit: -0.01
is output as ‘-=.01’ in F4.2 format but as ¢ .0’ in F4.1 format. Thus, a “negative
zero” never includes a minus sign.

e In negative numbers output in DOLLAR format, the dollar sign follows the negative
sign. Thus, -9.99 in DOLLARG6.2 format is output as -$9.99.

e In scientific notation, the exponent is output as ‘E’ followed by ‘+’ or ‘=’ and exactly
three digits. Numbers with magnitude less than 10**-999 or larger than 10**999 are not
supported by most computers, but if they are supported then their output is considered
to overflow the field and will be output as asterisks.

e On most computers, no more than 15 decimal digits are significant in output, even
if more are printed. In any case, output precision cannot be any higher than input
precision; few data sets are accurate to 15 digits of precision. Unavoidable loss of
precision in intermediate calculations may also reduce precision of output.

e Special values such as infinities and “not a number” values are usually converted to the
system-missing value before printing. In a few circumstances, these values are output
directly. In fields of width 3 or greater, special values are output as however many
characters will fit from +Infinity or -Infinity for infinities, from NaN for “not a
number,” or from Unknown for other values (if any are supported by the system). In
fields under 3 columns wide, special values are output as asterisks.

6.7.4.2 Custom Currency Formats

The custom currency formats are closely related to the basic numeric formats, but they
allow users to customize the output format. The SET command configures custom currency
formats, using the syntax

SET CCx="string".
where x is A, B, C, D, or E, and string is no more than 16 characters long.

string must contain exactly three commas or exactly three periods (but not both), except
that a single quote character may be used to “escape” a following comma, period, or single
quote. If three commas are used, commas will be used for grouping in output, and a period
will be used as the decimal point. Uses of periods reverses these roles.

The commas or periods divide string into four fields, called the negative prefix, prefix,
suffix, and negative suffix, respectively. The prefix and suffix are added to output whenever
space is available. The negative prefix and negative suffix are always added to a negative
number when the output includes a nonzero digit.

Chapter 6: The PSPP language 38

The following syntax shows how custom currency formats could be used to reproduce

basic numeric formats:

SET CCA="-,,,". /% Same as COMMA.

SET CCB="-...". /*x Same as DOT.

SET CCC="-,$,,". /* Same as DOLLAR.

SET CCD="-,,%,". /* Like PCT, but groups with commas.

Here are some more examples of custom currency formats. The final example shows how

to use a single quote to escape a delimiter:

SET CCA=",EUR,,-". /* Euro.

SET CCB="(,USD ,,)". /x US dollar.

SET CCC="-.R$..". /* Brazilian real.
SET CCD="-,, NIS,". /* Israel shekel.
SET CCE="-.Rp’. ..". /* Indonesia Rupiah.

These formats would yield the following output:

Format 3145.59 -3145.59
CCA12.2 EUR3,145.59 EUR3,145.59-
CCB14.2 USD 3,145.59 (USD 3,145.59)
CCC11.2 R$3.145,59 -R$3.145,59
CCD13.2 3,145.59 NIS -3,145.59 NIS
CCE10.0 Rp. 3.146 -Rp. 3.146

The default for all the custom currency formats is ‘-, , ,’, equivalent to COMMA format.

6.7.4.3 Legacy Numeric Formats

The N and Z numeric formats provide compatibility with legacy file formats. They have
much in common:

Output is rounded to the nearest representable value, with ties rounded away from
ZETO.

Numbers too large to display are output as a field filled with asterisks (‘*’).

The decimal point is always implicitly the specified number of digits from the right
edge of the field, except that Z format input allows an explicit decimal point.

Scientific notation may not be used.

The system-missing value is output as a period in a field of spaces. The period is
placed just to the right of the implied decimal point in Z format, or at the right end
in N format or in Z format if no decimal places are requested. A period is used even if
the decimal point character is a comma.

Field width may range from 1 to 40. Decimal places may range from 0 up to the field
width, to a maximum of 16.

When a legacy numeric format used for input is converted to an output format, it is
changed into the equivalent F format. The field width is increased by 1 if any decimal
places are specified, to make room for a decimal point. For Z format, the field width is
increased by 1 more column, to make room for a negative sign. The output field width
is capped at 40 columns.

Chapter 6: The PSPP language 39

N Format

The N format supports input and output of fields that contain only digits. On input, leading
or trailing spaces, a decimal point, or any other non-digit character causes the field to be
read as the system-missing value. As a special exception, an N format used on DATA LIST
FREE or DATA LIST LIST is treated as the equivalent F format.

On output, N pads the field on the left with zeros. Negative numbers are output like
the system-missing value.

7Z Format

The Z format is a “zoned decimal” format used on IBM mainframes. Z format encodes the
sign as part of the final digit, which must be one of the following:

0123456789
{ABCDEFGHI
}JKLMNOPQR

where the characters in each row represent digits 0 through 9 in order. Characters in the
first two rows indicate a positive sign; those in the third indicate a negative sign.

On output, Z fields are padded on the left with spaces. On input, leading and trailing
spaces are ignored. Any character in an input field other than spaces, the digit characters
above, and ‘.’ causes the field to be read as system-missing.

The decimal point character for input and output is always ‘.’, even if the decimal point
character is a comma (see [SET DECIMAL], page 163).

Nonzero, negative values output in 7 format are marked as negative even when no
nonzero digits are output. For example, -0.2 is output in Z1.0 format as ‘J’. The “negative
zero” value supported by most machines is output as positive.

6.7.4.4 Binary and Hexadecimal Numeric Formats

The binary and hexadecimal formats are primarily designed for compatibility with existing
machine formats, not for human readability. All of them therefore have a F format as
default output format. Some of these formats are only portable between machines with
compatible byte ordering (endianness) or floating-point format.

Binary formats use byte values that in text files are interpreted as special control func-
tions, such as carriage return and line feed. Thus, data in binary formats should not be
included in syntax files or read from data files with variable-length records, such as ordinary
text files. They may be read from or written to data files with fixed-length records. See
Section 8.8 [FILE HANDLE], page 70, for information on working with fixed-length records.

P and PK Formats

These are binary-coded decimal formats, in which every byte (except the last, in P format)
represents two decimal digits. The most-significant 4 bits of the first byte is the most-
significant decimal digit, the least-significant 4 bits of the first byte is the next decimal
digit, and so on.

In P format, the most-significant 4 bits of the last byte are the least-significant decimal
digit. The least-significant 4 bits represent the sign: decimal 15 indicates a negative value,
decimal 13 indicates a positive value.

Chapter 6: The PSPP language 40

Numbers are rounded downward on output. The system-missing value and numbers
outside representable range are output as zero.

The maximum field width is 16. Decimal places may range from 0 up to the number of
decimal digits represented by the field.

The default output format is an F format with twice the input field width, plus one
column for a decimal point (if decimal places were requested).

IB and PIB Formats

These are integer binary formats. IB reads and writes 2’s complement binary integers, and
PIB reads and writes unsigned binary integers. The byte ordering is by default the host
machine’s, but SET RIB may be used to select a specific byte ordering for reading (see
[SET RIB]|, page 163) and SET WIB, similarly, for writing (see [SET WIB]|, page 166).

The maximum field width is 8. Decimal places may range from 0 up to the number of
decimal digits in the largest value representable in the field width.

The default output format is an F format whose width is the number of decimal digits
in the largest value representable in the field width, plus 1 if the format has decimal places.

RB Format

This is a binary format for real numbers. By default it reads and writes the host machine’s
floating-point format, but SET RRB may be used to select an alternate floating-point
format for reading (see [SET RRB]|, page 164) and SET WRB, similarly, for writing (see
[SET WRBJ, page 166).

The recommended field width depends on the floating-point format. NATIVE (the
default format), IDL, IDB, VD, VG, and ZL formats should use a field width of 8. ISL,
ISB, VF, and ZS formats should use a field width of 4. Other field widths will not produce
useful results. The maximum field width is 8. No decimal places may be specified.

The default output format is F8.2.

PIBHEX and RBHEX Formats

These are hexadecimal formats, for reading and writing binary formats where each byte has
been recoded as a pair of hexadecimal digits.

A hexadecimal field consists solely of hexadecimal digits ‘0’...‘9” and ‘A’. . .‘F’. Upper-
case and lowercase are accepted on input; output is in uppercase.

Other than the hexadecimal representation, these formats are equivalent to PIB and
RB formats, respectively. However, bytes in PIBHEX format are always ordered with the
most-significant byte first (big-endian order), regardless of the host machine’s native byte
order or PSPP settings.

Field widths must be even and between 2 and 16. RBHEX format allows no decimal
places; PIBHEX allows as many decimal places as a PIB format with half the given width.

6.7.4.5 Time and Date Formats

In PsPP, a time is an interval. The time formats translate between human-friendly descrip-
tions of time intervals and PSPP’s internal representation of time intervals, which is simply
the number of seconds in the interval. PSPP has two time formats:

Chapter 6: The PSPP language 41

Time Format Template Example
TIME hh:MM:SS.ss 04:31:17.01
DTIME DD HH:MM:SS.ss 00 04:31:17.01

A date is a moment in the past or the future. Internally, PSPP represents a date as the
number of seconds since the epoch, midnight, Oct. 14, 1582. The date formats translate
between human-readable dates and PSPP’s numeric representation of dates and times. PSPP
has several date formats:

Date Format Template Example
DATE dd-mmm-yyyy 01-0CT-1978
ADATE mm/dd/yyyy 10/01/1978
EDATE dd.mm.yyyy 01.10.1978
JDATE yYyyijj 1978274
SDATE yyyy/mm/dd 1978/10/01
QYR qQ yyyy 3 Q1978
MOYR mmm yyyy 0CT 1978
WKYR ww WK yyyy 40 WK 1978

DATETIME dd-mmm-yyyy HH:MM:SS.ss 01-0CT-1978 04:31:17.01

The templates in the preceding tables describe how the time and date formats are input
and output:

dd Day of month, from 1 to 31. Always output as two digits.

mm

mmm Month. In output, mm is output as two digits, mmm as the first three letters of an
English month name (January, February, .. .). In input, both of these formats,

plus Roman numerals, are accepted.

yyyy Year. In output, DATETIME always produces a 4-digit year; other formats can
produce a 2- or 4-digit year. The century assumed for 2-digit years depends on
the EPOCH setting (see [SET EPOCH], page 163). In output, a year outside

the epoch causes the whole field to be filled with asterisks (‘*’).

jjj Day of year (Julian day), from 1 to 366. This is exactly three digits giving the
count of days from the start of the year. January 1 is considered day 1.

q Quarter of year, from 1 to 4. Quarters start on January 1, April 1, July 1, and
October 1.

wW Week of year, from 1 to 53. Output as exactly two digits. January 1 is the first
day of week 1.

DD Count of days, which may be positive or negative. Output as at least two digits.

hh Count of hours, which may be positive or negative. Output as at least two
digits.

HH Hour of day, from 0 to 23. Output as exactly two digits.

Chapter 6: The PSPP language 42

MM Minute of hour, from 0 to 59. Output as exactly two digits.

SS.ss Seconds within minute, from 0 to 59. The integer part is output as exactly two
digits. On output, seconds and fractional seconds may or may not be included,
depending on field width and decimal places. On input, seconds and fractional
seconds are optional. The DECIMAL setting controls the character accepted
and displayed as the decimal point (see [SET DECIMALJ, page 163).

For output, the date and time formats use the delimiters indicated in the table. For
input, date components may be separated by spaces or by one of the characters ‘=’, ‘/°,
‘.7, or ‘,’, and time components may be separated by spaces, ‘:’, or ‘.’. On input, the ‘Q’
separating quarter from year and the ‘WK’ separating week from year may be uppercase or

lowercase, and the spaces around them are optional.

On input, all time and date formats accept any amount of leading and trailing white
space.

The maximum width for time and date formats is 40 columns. Minimum input and
output width for each of the time and date formats is shown below:

Format Min. Input Width Min. Output Width Option
DATE 8 9 4-digit year
ADATE 8 8 4-digit year
EDATE 8 8 4-digit year
JDATE 5 5 4-digit year
SDATE 8 8 4-digit year
QYR 4 6 4-digit year
MOYR 6 6 4-digit year
WKYR 6 8 4-digit year
DATETIME 17 17 seconds
TIME 5 5 seconds
DTIME 8 8 seconds

In the table, “Option” describes what increased output width enables:

4-digit year
A field 2 columns wider than minimum will include a 4-digit year. (DATETIME
format always includes a 4-digit year.)

seconds A field 3 columns wider than minimum will include seconds as well as minutes.
A field 5 columns wider than minimum, or more, can also include a decimal
point and fractional seconds (but no more than allowed by the format’s decimal
places).

For the time and date formats, the default output format is the same as the input format,
except that PSPP increases the field width, if necessary, to the minimum allowed for output.

Time or dates narrower than the field width are right-justified within the field.

When a time or date exceeds the field width, characters are trimmed from the end until
it fits. This can occur in an unusual situation, e.g. with a year greater than 9999 (which
adds an extra digit), or for a negative value on TIME or DTIME (which adds a leading
minus sign).

Chapter 6: The PSPP language 43

The system-missing value is output as a period at the right end of the field.

6.7.4.6 Date Component Formats

The WKDAY and MONTH formats provide input and output for the names of weekdays
and months, respectively.

On output, these formats convert a number between 1 and 7, for WKDAY, or between 1
and 12, for MONTH, into the English name of a day or month, respectively. If the name is
longer than the field, it is trimmed to fit. If the name is shorter than the field, it is padded
on the right with spaces. Values outside the valid range, and the system-missing value, are
output as all spaces.

On input, English weekday or month names (in uppercase or lowercase) are converted
back to their corresponding numbers. Weekday and month names may be abbreviated to
their first 2 or 3 letters, respectively.

The field width may range from 2 to 40, for WKDAY, or from 3 to 40, for MONTH. No
decimal places are allowed.

The default output format is the same as the input format.

6.7.4.7 String Formats

The A and AHEX formats are the only ones that may be assigned to string variables.
Neither format allows any decimal places.

In A format, the entire field is treated as a string value. The field width may range from
1 to 32,767, the maximum string width. The default output format is the same as the input
format.

In AHEX format, the field is composed of characters in a string encoded as hex digit
pairs. On output, hex digits are output in uppercase; on input, uppercase and lowercase
are both accepted. The default output format is A format with half the input width.

6.7.5 Scratch Variables

Most of the time, variables don’t retain their values between cases. Instead, either they’re
being read from a data file or the active dataset, in which case they assume the value read,
or, if created with COMPUTE or another transformation, they’re initialized to the system-
missing value or to blanks, depending on type.

However, sometimes it’s useful to have a variable that keeps its value between cases.
You can do this with LEAVE (see Section 11.5 [LEAVE], page 101), or you can use a scratch
variable. Scratch variables are variables whose names begin with an octothorpe (‘#).

Scratch variables have the same properties as variables left with LEAVE: they retain their
values between cases, and for the first case they are initialized to 0 or blanks. They have
the additional property that they are deleted before the execution of any procedure. For
this reason, scratch variables can’t be used for analysis. To use a scratch variable in an
analysis, use COMPUTE (see Section 12.3 [COMPUTE], page 114) to copy its value into an
ordinary variable, then use that ordinary variable in the analysis.

6.8 Files Used by psppP

PSPP makes use of many files each time it runs. Some of these it reads, some it writes, some
it creates. Here is a table listing the most important of these files:

Chapter 6: The PSPP language 44

command file

syntax file These names (synonyms) refer to the file that contains instructions that tell
pPsPP what to do. The syntax file’s name is specified on the PSPP command
line. Syntax files can also be read with INCLUDE (see Section 16.15 INCLUDE],
page 159).

datafile = Data files contain raw data in text or binary format. Data can also be embedded
in a syntax file with BEGIN DATA and END DATA.

listing file One or more output files are created by PSPP each time it is run. The output files
receive the tables and charts produced by statistical procedures. The output
files may be in any number of formats, depending on how PSPP is configured.

system file
System files are binary files that store a dictionary and a set of cases. GET and
SAVE read and write system files.

portable file
Portable files are files in a text-based format that store a dictionary and a set
of cases. IMPORT and EXPORT read and write portable files.

6.9 File Handles

A file handle is a reference to a data file, system file, or portable file. Most often, a file
handle is specified as the name of a file as a string, that is, enclosed within **’ or ‘"’.

A file name string that begins or ends with ‘|’ is treated as the name of a command to pipe
data to or from. You can use this feature to read data over the network using a program such
as ‘curl’ (e.g. GET ’ |curl -s -S http://example.com/mydata.sav’), to read compressed
data from a file using a program such as ‘zcat’ (e.g. GET ’ |zcat mydata.sav.gz’), and for
many other purposes.

PSPP also supports declaring named file handles with the FILE HANDLE command. This
command associates an identifier of your choice (the file handle’s name) with a file. Later,
the file handle name can be substituted for the name of the file. When PSPP syntax accesses
a file multiple times, declaring a named file handle simplifies updating the syntax later to
use a different file. Use of FILE HANDLE is also required to read data files in binary formats.
See Section 8.8 [FILE HANDLE], page 70, for more information.

In some circumstances, PSPP must distinguish whether a file handle refers to a system
file or a portable file. When this is necessary to read a file, e.g. as an input file for GET or
MATCH FILES, PSPP uses the file’s contents to decide. In the context of writing a file, e.g. as
an output file for SAVE or AGGREGATE, PSPP decides based on the file’s name: if it ends in
‘.por’ (with any capitalization), then PSPP writes a portable file; otherwise, PSPP writes a
system file.

INLINE is reserved as a file handle name. It refers to the “data file” embedded into the
syntax file between BEGIN DATA and END DATA. See Section 8.1 [BEGIN DATA], page 64,
for more information.

The file to which a file handle refers may be reassigned on a later FILE HANDLE command
if it is first closed using CLOSE FILE HANDLE. See Section 8.2 [CLOSE FILE HANDLE],
page 64, for more information.

Chapter 6: The PSPP language 45

6.10 Backus-Naur Form

The syntax of some parts of the PSPP language is presented in this manual using the
formalism known as Backus-Naur Form, or BNF. The following table describes BNF:

Words in all-uppercase are PSPP keyword tokens. In BNF, these are often called ter-
minals. There are some special terminals, which are written in lowercase for clarity:

number A real number.
integer An integer number.
string A string.

var-name A single variable name.

= /7 +7) etc.
Operators and punctuators.

The end of the command. This is not necessarily an actual dot in the
syntax file: See Section 6.2 [Commands], page 29, for more details.

Other words in all lowercase refer to BNF definitions, called productions. These pro-
ductions are also known as nonterminals. Some nonterminals are very common, so they
are defined here in English for clarity:

var-list A list of one or more variable names or the keyword ALL.

expression
An expression. See Chapter 7 [Expressions|, page 46, for details.

4 i

::=" means “is defined as”. The left side of ‘::=" gives the name of the nonterminal
being defined. The right side of ‘: :=’ gives the definition of that nonterminal. If the
right side is empty, then one possible expansion of that nonterminal is nothing. A BNF
definition is called a production.

So, the key difference between a terminal and a nonterminal is that a terminal cannot
be broken into smaller parts—in fact, every terminal is a single token (see Section 6.1
[Tokens|, page 28). On the other hand, nonterminals are composed of a (possibly
empty) sequence of terminals and nonterminals. Thus, terminals indicate the deepest
level of syntax description. (In parsing theory, terminals are the leaves of the parse
tree; nonterminals form the branches.)

The first nonterminal defined in a set of productions is called the start symbol. The
start symbol defines the entire syntax for that command.

Chapter 7: Mathematical Expressions 46

7 Mathematical Expressions

Expressions share a common syntax each place they appear in PSPP commands. Expressions
are made up of operands, which can be numbers, strings, or variable names, separated by
operators. There are five types of operators: grouping, arithmetic, logical, relational, and
functions.

Every operator takes one or more operands as input and yields exactly one result as
output. Depending on the operator, operands accept strings or numbers as operands. With
few exceptions, operands may be full-fledged expressions in themselves.

7.1 Boolean Values

Some PSPP operators and expressions work with Boolean values, which represent true/false
conditions. Booleans have only three possible values: 0 (false), 1 (true), and system-missing
(unknown). System-missing is neither true nor false and indicates that the true value is
unknown.

Boolean-typed operands or function arguments must take on one of these three values.
Other values are considered false, but provoke a warning when the expression is evaluated.

Strings and Booleans are not compatible, and neither may be used in place of the other.

7.2 Missing Values in Expressions

Most numeric operators yield system-missing when given any system-missing operand. A
string operator given any system-missing operand typically results in the empty string.
Exceptions are listed under particular operator descriptions.

String user-missing values are not treated specially in expressions.

User-missing values for numeric variables are always transformed into the system-missing
value, except inside the arguments to the VALUE and SYSMIS functions.

The missing-value functions can be used to precisely control how missing values are
treated in expressions. See Section 7.7.4 [Missing Value Functions|, page 49, for more
details.

7.3 Grouping Operators

Parentheses (‘()’) are the grouping operators. Surround an expression with parentheses to
force early evaluation.

Parentheses also surround the arguments to functions, but in that situation they act as
punctuators, not as operators.

7.4 Arithmetic Operators

The arithmetic operators take numeric operands and produce numeric results.

a+b Yields the sum of a and b.
a-b Subtracts b from a and yields the difference.
a*xb Yields the product of a and b. If either a or b is 0, then the result is 0, even if

the other operand is missing.

Chapter 7: Mathematical Expressions 47

a/b

a **x b

- a

Divides a by b and yields the quotient. If a is 0, then the result is 0, even if b
is missing. If b is zero, the result is system-missing.

Yields the result of raising a to the power b. If a is negative and b is not an
integer, the result is system-missing. The result of 0**0 is system-missing as
well.

Reverses the sign of a.

7.5 Logical Operators

The logical operators take logical operands and produce logical results, meaning “true or
false.” Logical operators are not true Boolean operators because they may also result in a
system-missing value. See Section 7.1 [Boolean Values|, page 46, for more information.

a AND b
a&b

aOR b
alb

NOT a

a

True if both a and b are true, false otherwise. If one operand is false, the result
is false even if the other is missing. If both operands are missing, the result is
missing.

True if at least one of a and b is true. If one operand is true, the result is true
even if the other operand is missing. If both operands are missing, the result is
missing.

True if a is false. If the operand is missing, then the result is missing.

7.6 Relational Operators

The relational operators take numeric or string operands and produce Boolean results.

Strings cannot be compared to numbers. When strings of different lengths are compared,
the shorter string is right-padded with spaces to match the length of the longer string.

The results of string comparisons, other than tests for equality or inequality, depend on
the character set in use. String comparisons are case-sensitive.

aEQ b
a=b>b
alLEDb
a<=b
alLTb
a<b
aGE b
a>»b
aGT b
a>b
aNE b
a“=b
a<>b

True if a is equal to b.

True if a is less than or equal to b.

True if a is less than b.

True if a is greater than or equal to b.

True if a is greater than b.

True if a is not equal to b.

Chapter 7: Mathematical Expressions 48

7.7 Functions

PSPP functions provide mathematical abilities above and beyond those possible using simple
operators. Functions have a common syntax: each is composed of a function name followed
by a left parenthesis, one or more arguments, and a right parenthesis.

Function names are not reserved. Their names are specially treated only when followed
by a left parenthesis, so that ‘EXP(10)’ refers to the constant value e raised to the 10th
power, but ‘EXP’ by itself refers to the value of a variable called EXP.

The sections below describe each function in detail.

7.7.1 Mathematical Functions

Advanced mathematical functions take numeric arguments and produce numeric results.

EXP (exponent) [Function]
Returns e (approximately 2.71828) raised to power exponent.

LG10 (number) [Function]
Takes the base-10 logarithm of number. If number is not positive, the result is
system-missing.

LN (number) [Function]
Takes the base-e logarithm of number. If number is not positive, the result is system-
missing.

LNGAMMA (number) [Function]

Yields the base-e logarithm of the complete gamma of number. If number is a negative
integer, the result is system-missing.

SQRT (number) [Function]
Takes the square root of number. If number is negative, the result is system-missing.

7.7.2 Miscellaneous Mathematical Functions

Miscellaneous mathematical functions take numeric arguments and produce numeric results.

ABS (number) [Function]
Results in the absolute value of number.

MOD (numerator, denominator) [Function]
Returns the remainder (modulus) of numerator divided by denominator. If numerator
is 0, then the result is 0, even if denominator is missing. If denominator is 0, the
result is system-missing.

MOD10 (number) [Function]
Returns the remainder when number is divided by 10. If number is negative,
MOD10(number) is negative or zero.

RND (number [, mult|, fuzzbits]]) [Function]
Rounds number and rounds it to a multiple of mult (by default 1). Halves are rounded
away from zero, as are values that fall short of halves by less than fuzzbits of errors
in the least-significant bits of number. If fuzzbits is not specified then the default
is taken from SET FUZZBITS (see [SET FUZZBITS]|, page 165), which is 6 unless
overridden.

Chapter 7: Mathematical Expressions 49

TRUNC (number [, mult|, fuzzbits]|) [Function]
Rounds number to a multiple of mult, toward zero. For the default mult of 1, this
is equivalent to discarding the fractional part of number. Values that fall short of a
multiple of mult by less than fuzzbits of errors in the least-significant bits of number

are rounded away from zero. If fuzzbits is not specified then the default is taken from
SET FUZZBITS (see [SET FUZZBITS], page 165), which is 6 unless overridden.

7.7.3 Trigonometric Functions

Trigonometric functions take numeric arguments and produce numeric results.

ARCOS (number) [Function]

ACOS (number) [Function]
Takes the arccosine, in radians, of number. Results in system-missing if number is
not between -1 and 1 inclusive. This function is a PSPP extension.

ARSIN (number) [Function]

ASIN (number) [Function]
Takes the arcsine, in radians, of number. Results in system-missing if number is not
between -1 and 1 inclusive.

ARTAN (number) [Function]
ATAN (number) [Function]
Takes the arctangent, in radians, of number.

COS (angle) [Function]
Takes the cosine of angle which should be in radians.

SIN (angle) [Function]
Takes the sine of angle which should be in radians.

TAN (angle) [Function]
Takes the tangent of angle which should be in radians. Results in system-missing at
values of angle that are too close to odd multiples of /2. Portability: none.

7.7.4 Missing-Value Functions

Missing-value functions take various numeric arguments and yield various types of results.
Except where otherwise stated below, the normal rules of evaluation apply within expression
arguments to these functions. In particular, user-missing values for numeric variables are
converted to system-missing values.

MISSING (expr) [Function]
Returns 1 if expr has the system-missing value, 0 otherwise.

NMISS (expr [, expr]...) [Function]
Each argument must be a numeric expression. Returns the number of system-missing
values in the list, which may include variable ranges using the varl TO var2 syntax.

NVALID (expr [, expr]...) [Function]
Each argument must be a numeric expression. Returns the number of values in the
list that are not system-missing. The list may include variable ranges using the vari
TO var2 syntax.

Chapter 7: Mathematical Expressions 50

SYSMIS (expr) [Function]
When expr is simply the name of a numeric variable, returns 1 if the variable has
the system-missing value, O if it is user-missing or not missing. If given expr takes
another form, results in 1 if the value is system-missing, 0 otherwise.

VALUE (variable) [Function]
Prevents the user-missing values of variable from being transformed into system-
missing values, and always results in the actual value of variable, whether it is valid,
user-missing, or system-missing.

7.7.5 Set-Membership Functions

Set membership functions determine whether a value is a member of a set. They take a set
of numeric arguments or a set of string arguments, and produce Boolean results.

String comparisons are performed according to the rules given in Section 7.6 [Relational
Operators], page 47.

ANY (value, set [, set]...) [Function]
Results in true if value is equal to any of the set values. Otherwise, results in false.
If value is system-missing, returns system-missing. System-missing values in set do
not cause /NAME/ to return system-missing.

RANGE (value, low, high [, 1ow, high]...) [Function]
Results in true if value is in any of the intervals bounded by low and high inclusive.
Otherwise, results in false. Each low must be less than or equal to its corresponding
high value. low and high must be given in pairs. If value is system-missing, returns
system-missing. System-missing values in set do not cause /NAME/ to return system-
missing.

7.7.6 Statistical Functions

Statistical functions compute descriptive statistics on a list of values. Some statistics can
be computed on numeric or string values; other can only be computed on numeric values.
Their results have the same type as their arguments. The current case’s weighting factor
(see Section 13.7 [WEIGHT], page 124) has no effect on statistical functions.

These functions’ argument lists may include entire ranges of variables using the vari1 TO
var2 syntax.

Unlike most functions, statistical functions can return non-missing values even when
some of their arguments are missing. Most statistical functions, by default, require only 1
non-missing value to have a non-missing return, but /NAME/, /NAME/, and /NAME/ require 2.
These defaults can be increased (but not decreased) by appending a dot and the minimum
number of valid arguments to the function name. For example, MEAN.3(X, Y, Z) would
only return non-missing if all of ‘X’, ‘Y’, and ‘Z’ were valid.

CFVAR (number, number], ...]) [Function]
Results in the coefficient of variation of the values of number. (The coefficient of
variation is the standard deviation divided by the mean.)

MAX (value, value|, ...|) [Function]
Results in the value of the greatest value. The values may be numeric or string.

Chapter 7: Mathematical Expressions 51

MEAN (number, number], ...]) [Function]
Results in the mean of the values of number.

MEDIAN (number, number], ...]) [Function]
Results in the median of the values of number. Given an even number of nonmissing
arguments, yields the mean of the two middle values.

MIN (number, number], ...]) [Function]
Results in the value of the least value. The values may be numeric or string.

SD (number, number], . ..]) [Function]
Results in the standard deviation of the values of number.

SUM (number, number|, . ..]) [Function]
Results in the sum of the values of number.

VARIANCE (number, number]|, ...]) [Function]
Results in the variance of the values of number.

7.7.7 String Functions

String functions take various arguments and return various results.

CONCAT (string, string|, ...]) [Function]
Returns a string consisting of each string in sequence. CONCAT("abc", "def",
"ghi") has a value of "abcdefghi". The resultant string is truncated to a maximum
of 255 characters.

INDEX (haystack, needle) [Function]
Returns a positive integer indicating the position of the first occurrence of needle in
haystack. Returns 0 if haystack does not contain needle. Returns system-missing if
needle is an empty string.

INDEX (haystack, needles, needle_len) [Function]
Divides needles into one or more needles, each with length needle_len. Searches
haystack for the first occurrence of each needle, and returns the smallest value. Re-
turns 0 if haystack does not contain any part in needle. It is an error if needle_len
does not evenly divide the length of needles. Returns system-missing if needles is an
empty string.

LENGTH (string) [Function]
Returns the number of characters in string.

LOWER (string) [Function]
Returns a string identical to string except that all uppercase letters are changed
to lowercase letters. The definitions of “uppercase” and “lowercase” are system-
dependent.

LPAD (string, length) [Function]
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with spaces on the left side to length length. Returns an empty
string if length is system-missing, negative, or greater than 255.

Chapter 7: Mathematical Expressions 52

LPAD (string, length, padding) [Function]
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with padding on the left side to length length. Returns an
empty string if length is system-missing, negative, or greater than 255, or if padding
does not contain exactly one character.

LTRIM (string) [Function]
Returns string, after removing leading spaces. Other white space, such as tabs, car-
riage returns, line feeds, and vertical tabs, is not removed.

LTRIM (string, padding) [Function]
Returns string, after removing leading padding characters. If padding does not con-
tain exactly one character, returns an empty string.

NUMBER (string, format) [Function]
Returns the number produced when string is interpreted according to format specifier
format. If the format width w is less than the length of string, then only the first w
characters in string are used, e.g. NUMBER("123", F3.0) and NUMBER("1234", F3.0)
both have value 123. If w is greater than string’s length, then it is treated as if
it were right-padded with spaces. If string is not in the correct format for format,
system-missing is returned.

REPLACE (haystack, needle, replacement], n]) [Function]
Returns string haystack with instances of needle replaced by replacement. If nonneg-
ative integer n is specified, it limits the maximum number of replacements; otherwise,
all instances of needle are replaced.

RINDEX (haystack, needle) [Function]
Returns a positive integer indicating the position of the last occurrence of needle in
haystack. Returns 0 if haystack does not contain needle. Returns system-missing if
needle is an empty string.

RINDEX (haystack, needle, needle_len) [Function]
Divides needle into parts, each with length needle_len. Searches haystack for the last
occurrence of each part, and returns the largest value. Returns 0 if haystack does
not contain any part in needle. It is an error if needle_len does not evenly divide the
length of needle. Returns system-missing if needle is an empty string or if needle_len
is less than 1.

RPAD (string, length) [Function]
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with spaces on the right to length length. Returns an empty
string if length is system-missing, negative, or greater than 255.

RPAD (string, length, padding) [Function]
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with padding on the right to length length. Returns an empty
string if length is system-missing, negative, or greater than 255, or if padding does
not contain exactly one character.

Chapter 7: Mathematical Expressions 53

RTRIM (string) [Function]
Returns string, after removing trailing spaces. Other types of white space are not
removed.

RTRIM (string, padding) [Function]

Returns string, after removing trailing padding characters. If padding does not con-
tain exactly one character, returns an empty string.

STRING (number, format) [Function]
Returns a string corresponding to number in the format given by format specifier
format. For example, STRING(123.56, F5.1) has the value "123.6".

STRUNC (string, n) [Function]
Returns string, first trimming it to at most n bytes, then removing trailing spaces.
Returns an empty string if n is missing or negative.

SUBSTR (string, start) [Function]
Returns a string consisting of the value of string from position start onward. Returns
an empty string if start is system-missing, less than 1, or greater than the length of
string.

SUBSTR (string, start, count) [Function]
Returns a string consisting of the first count characters from string beginning at
position start. Returns an empty string if start or count is system-missing, if start is
less than 1 or greater than the number of characters in string, or if count is less than
1. Returns a string shorter than count characters if start + count - 1 is greater than
the number of characters in string. Examples: SUBSTR("abcdefg", 3, 2) has value
"cd"; SUBSTR("nonsense", 4, 10) has the value "sense".

UPCASE (string) [Function]
Returns string, changing lowercase letters to uppercase letters.

7.7.8 Time & Date Functions
For compatibility, PSPP considers dates before 15 Oct 1582 invalid. Most time and date
functions will not accept earlier dates.

7.7.8.1 How times & dates are defined and represented

Times and dates are handled by PSPP as single numbers. A time is an interval. PSPP
measures times in seconds. Thus, the following intervals correspond with the numeric
values given:

10 minutes 600
1 hour 3,600
1 day, 3 hours, 10 seconds 97,210
40 days 3,456,000

A date, on the other hand, is a particular instant in the past or the future. PSPP
represents a date as a number of seconds since midnight preceding 14 Oct 1582. Because
midnight preceding the dates given below correspond with the numeric PSPP dates given:

Chapter 7: Mathematical Expressions 54

15 Oct 1582 86,400
4 Jul 1776 6,113,318,400
1 Jan 1900 10,010,390,400
1 Oct 1978 12,495,427,200
24 Aug 1995 13,028,601,600

7.7.8.2 Functions that Produce Times

These functions take numeric arguments and return numeric values that represent times.

TIME.DAYS (ndays) [Function]
Returns a time corresponding to ndays days.

TIME.HMS (nhours, nmins, nsecs) [Function]
Returns a time corresponding to nhours hours, nmins minutes, and nsecs seconds.
The arguments may not have mixed signs: if any of them are positive, then none may
be negative, and vice versa.

7.7.8.3 Functions that Examine Times
These functions take numeric arguments in PSPP time format and give numeric results.

CTIME.DAYS (time) [Function]
Results in the number of days and fractional days in time.

CTIME.HOURS (time) [Function]
Results in the number of hours and fractional hours in time.

CTIME.MINUTES (time) [Function]
Results in the number of minutes and fractional minutes in time.

CTIME.SECONDS (time) [Function]
Results in the number of seconds and fractional seconds in time. (CTIME.SECONDS
does nothing; CTIME.SECONDS (x) is equivalent to x.)

7.7.8.4 Functions that Produce Dates

These functions take numeric arguments and give numeric results that represent dates.
Arguments taken by these functions are:

day Refers to a day of the month between 1 and 31. Day 0 is also accepted and
refers to the final day of the previous month. Days 29, 30, and 31 are accepted
even in months that have fewer days and refer to a day near the beginning of
the following month.

month Refers to a month of the year between 1 and 12. Months 0 and 13 are also
accepted and refer to the last month of the preceding year and the first month
of the following year, respectively.

quarter Refers to a quarter of the year between 1 and 4. The quarters of the year begin
on the first day of months 1, 4, 7, and 10.

week Refers to a week of the year between 1 and 53.

Chapter 7: Mathematical Expressions 55

yday Refers to a day of the year between 1 and 366.

year Refers to a year, 1582 or greater. Years between 0 and 99 are treated according
to the epoch set on SET EPOCH, by default beginning 69 years before the
current date (see [SET EPOCH], page 163).

If these functions’ arguments are out-of-range, they are correctly normalized before con-
version to date format. Non-integers are rounded toward zero.

DATE.DMY (day, month, year) [Function]

DATE.MDY (month, day, year) [Function]
Results in a date value corresponding to the midnight before day day of month month
of year year.

DATE.MOYR (month, year) [Function]
Results in a date value corresponding to the midnight before the first day of month
month of year year.

DATE.QYR (quarter, year) [Function]
Results in a date value corresponding to the midnight before the first day of quarter
quarter of year year.

DATE.WKYR (week, year) [Function]
Results in a date value corresponding to the midnight before the first day of week
week of year year.

DATE.YRDAY (year, yday) [Function]
Results in a date value corresponding to the day yday of year year.

7.7.8.5 Functions that Examine Dates

These functions take numeric arguments in PSPP date or time format and give numeric
results. These names are used for arguments:

date A numeric value in PSPP date format.
time A numeric value in PSPP time format.

time-or-date
A numeric value in PSPP time or date format.

XDATE.DATE (time-or-date) [Function]
For a time, results in the time corresponding to the number of whole days date-or-
time includes. For a date, results in the date corresponding to the latest midnight at
or before date-or-time; that is, gives the date that date-or-time is in.

XDATE.HOUR (time-or-date) [Function]
For a time, results in the number of whole hours beyond the number of whole days
represented by date-or-time. For a date, results in the hour (as an integer between 0
and 23) corresponding to date-or-time.

XDATE. JDAY (date) [Function]
Results in the day of the year (as an integer between 1 and 366) corresponding to
date.

Chapter 7: Mathematical Expressions 56

XDATE.MDAY (date) [Function]
Results in the day of the month (as an integer between 1 and 31) corresponding to
date.

XDATE.MINUTE (time-or-date) [Function]

Results in the number of minutes (as an integer between 0 and 59) after the last hour
in time-or-date.

XDATE.MONTH (date) [Function]
Results in the month of the year (as an integer between 1 and 12) corresponding to
date.

XDATE.QUARTER (date) [Function]
Results in the quarter of the year (as an integer between 1 and 4) corresponding to
date.

XDATE.SECOND (time-or-date) [Function]

Results in the number of whole seconds after the last whole minute (as an integer
between 0 and 59) in time-or-date.

XDATE.TDAY (date) [Function]
Results in the number of whole days from 14 Oct 1582 to date.

XDATE.TIME (date) [Function]
Results in the time of day at the instant corresponding to date, as a time value. This
is the number of seconds since midnight on the day corresponding to date.

XDATE.WEEK (date) [Function]
Results in the week of the year (as an integer between 1 and 53) corresponding to
date.

XDATE.WKDAY (date) [Function]

Results in the day of week (as an integer between 1 and 7) corresponding to date,
where 1 represents Sunday.

XDATE.YEAR (date) [Function]
Returns the year (as an integer 1582 or greater) corresponding to date.

7.7.8.6 Time and Date Arithmetic

Ordinary arithmetic operations on dates and times often produce sensible results. Adding
a time to, or subtracting one from, a date produces a new date that much earlier or later.
The difference of two dates yields the time between those dates. Adding two times produces
the combined time. Multiplying a time by a scalar produces a time that many times longer.
Since times and dates are just numbers, the ordinary addition and subtraction operators
are employed for these purposes.

Adding two dates does not produce a useful result.

Dates and times may have very large values. Thus, it is not a good idea to take powers
of these values; also, the accuracy of some procedures may be affected. If necessary, convert
times or dates in seconds to some other unit, like days or years, before performing analysis.

pPsPP supplies a few functions for date arithmetic:

Chapter 7: Mathematical Expressions 57

DATEDIFF (date2, datel, unit) [Function]

Returns the span of time from datel to date2 in terms of unit, which must be a quoted
string, one of ‘years’, ‘quarters’, ‘months’, ‘weeks’, ‘days’, ‘hours’, ‘minutes’, and
‘seconds’. The result is an integer, truncated toward zero.
One year is considered to span from a given date to the same month, day, and time of
day the next year. Thus, from Jan. 1 of one year to Jan. 1 the next year is considered
to be a full year, but Feb. 29 of a leap year to the following Feb. 28 is not. Similarly,
one month spans from a given day of the month to the same day of the following
month. Thus, there is never a full month from Jan. 31 of a given year to any day in
the following February.

DATESUM (date, quantity, unit|, method)) [Function]
Returns date advanced by the given quantity of the specified unit, which must be
one of the strings ‘years’, ‘quarters’, ‘months’, ‘weeks’, ‘days’, ‘hours’, ‘minutes’,
and ‘seconds’.

When unit is ‘years’, ‘quarters’, or ‘months’, only the integer part of quantity is
considered. Adding one of these units can cause the day of the month to exceed
the number of days in the month. In this case, the method comes into play: if it is
omitted or specified as ‘closest’ (as a quoted string), then the resulting day is the
last day of the month; otherwise, if it is specified as ‘rollover’, then the extra days
roll over into the following month.

When unit is ‘weeks’, ‘days’, ‘hours’, ‘minutes’, or ‘seconds’, the quantity is not
rounded to an integer and method, if specified, is ignored.

7.7.9 Miscellaneous Functions

LAG (variable], n]) [Function]
variable must be a numeric or string variable name. LAG yields the value of that
variable for the case n before the current one. Results in system-missing (for numeric
variables) or blanks (for string variables) for the first n cases.

LAG obtains values from the cases that become the new active dataset after a procedure
executes. Thus, LAG will not return values from cases dropped by transformations
such as SELECT IF, and transformations like COMPUTE that modify data will change
the values returned by LAG. These are both the case whether these transformations
precede or follow the use of LAG.

If LAG is used before TEMPORARY, then the values it returns are those in cases just
before TEMPORARY. LAG may not be used after TEMPORARY.

If omitted, ncases defaults to 1. Otherwise, ncases must be a small positive constant
integer. There is no explicit limit, but use of a large value will increase memory
consumption.

YRMODA (year, month, day) [Function]
year is a year, either between 0 and 99 or at least 1582. Unlike other PSPP date
functions, years between 0 and 99 always correspond to 1900 through 1999. month
is a month between 1 and 13. day is a day between 0 and 31. A day of 0 refers to
the last day of the previous month, and a month of 13 refers to the first month of the
next year. year must be in range. year, month, and day must all be integers.

Chapter 7: Mathematical Expressions 58

YRMODA results in the number of days between 15 Oct 1582 and the date specified,
plus one. The date passed to YRMODA must be on or after 15 Oct 1582. 15 Oct 1582
has a value of 1.

VALUELABEL (variable) [Function]
Returns a string matching the label associated with the current value of variable. If
the current value of variable has no associated label, then this function returns the
empty string. variable may be a numeric or string variable.

7.7.10 Statistical Distribution Functions

PSPP can calculate several functions of standard statistical distributions. These functions
are named systematically based on the function and the distribution. The table below
describes the statistical distribution functions in general:

PDF.dist (x[, param. . .])
Probability density function for dist. The domain of x depends on dist. For
continuous distributions, the result is the density of the probability function at
x, and the range is nonnegative real numbers. For discrete distributions, the
result is the probability of x.

CDF .dist (x[, param. . .])
Cumulative distribution function for dist, that is, the probability that a random
variate drawn from the distribution is less than x. The domain of x depends
dist. The result is a probability.

SIG.dist (x[, param. . .)
Tail probability function for dist, that is, the probability that a random variate
drawn from the distribution is greater than x. The domain of x depends dist.
The result is a probability. Only a few distributions include an /NAME/ function.

IDF.dist (p[, param. . .])
Inverse distribution function for dist, the value of x for which the CDF would
yield p. The value of p is a probability. The range depends on dist and is
identical to the domain for the corresponding CDF.

RV.dist ([param. . .])
Random variate function for dist. The range depends on the distribution.

NPDF.dist (x|, param. . .])
Noncentral probability density function. The result is the density of the given
noncentral distribution at x. The domain of x depends on dist. The range is
nonnegative real numbers. Only a few distributions include an /NAME/ function.

NCDF.dist (x[, param. . .])
Noncentral cumulative distribution function for dist, that is, the probability
that a random variate drawn from the given noncentral distribution is less than
x. The domain of x depends dist. The result is a probability. Only a few
distributions include an NCDF function.

The individual distributions are described individually below.

Chapter 7: Mathematical Expressions 59

7.7.10.1 Continuous Distributions

The following continuous distributions are available:

PDF.BETA (x) [Function
CDF.BETA (x, a, b) [Function
IDF.BETA (p, a, b) [Function
RV.BETA (a, b) [Function
NPDF.BETA (x, a, b, 1ambda) [Function
NCDF.BETA (x, a, b, 1ambda) [Function

Beta distribution with shape parameters a and b. The noncentral distribution takes

an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <=

]
]
]
]
]
]

1,0 <=p<=1.
PDF.BVNOR (x0, x1, rho) [Function]
CDF.VBNOR (x0, x1, rho) [Function]

Bivariate normal distribution of two standard normal variables with correlation coef-
ficient rho. Two variates x0 and x1 must be provided. Constraints: 0 <= rho <=1,

0<=p<=1.
PDF.CAUCHY (x, a, b) [Function]
CDF.CAUCHY (x, a, b) [Function]
IDF.CAUCHY (p, a, b) [Function]
RV.CAUCHY (a, b) [Function]

Cauchy distribution with location parameter a and scale parameter b. Constraints:
b>0,0<p<1.

CDF.CHISQ (x, df) [Function]
SIG.CHISQ (x, df) [Function]
IDF.CHISQ (p, df) [Function]
RV.CHISQ (df) [Function]
NCDF.CHISQ (x, df, lambda) [Function]

Chi-squared distribution with df degrees of freedom. The noncentral distribution

takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0

<=pK< 1.
PDF.EXP (x, a) [Function]
CDF.EXP (x, a) [Function]
IDF.EXP (p, a) [Function]
RV.EXP (a) [Function]

Exponential distribution with scale parameter a. The inverse of a represents the rate
of decay. Constraints: a >0, x >=0,0<=p < 1.

PDF.XPOWER (x, a, b) [Function]

RV.XPOWER (a, b) [Function]
Exponential power distribution with positive scale parameter a and nonnegative power
parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is
a PSPP extension.

Chapter 7: Mathematical Expressions 60

PDF.F (x, df1, df2) [Function]
CDF.F (x, df1, df2) [Function]
SIG.F (x, df1, df2) [Function]
IDF.F (p, df1, df2) [Function]
RV.F (df1, df2) [Function]

F-distribution of two chi-squared deviates with dfl and df2 degrees of freedom. The
noncentral distribution takes an additional parameter lambda. Constraints: dfl > 0,
df2 > 0, lambda >= 0, x >=0,0<=p < 1.

PDF.GAMMA (x, a, b) [Function]
CDF.GAMMA (x, a, b) [Function]
IDF.GAMMA (p, a, b) [Function]
RV.GAMMA (a, b) [Function]

Gamma distribution with shape parameter a and scale parameter b. Constraints: a
>0,b>0,x>=0,0<=p<1.

PDF.LANDAU (x) [Function]

RV.LANDAU () [Function]
Landau distribution.

PDF.LAPLACE (x, a, b) Function

CDF.LAPLACE (x, a, b) Function

[|

[|

IDF.LAPLACE (p, a, b) [Function]

RV.LAPLACE (a, b) [Function]
Laplace distribution with location parameter a and scale parameter b. Constraints:
b>0,0<p<1.

RV.LEVY (c, alpha) [Function]
Levy symmetric alpha-stable distribution with scale ¢ and exponent alpha. Con-
straints: 0 < alpha <= 2.

RV.LVSKEW (c, alpha, beta) [Function]
Levy skew alpha-stable distribution with scale ¢, exponent alpha, and skewness pa-
rameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.

PDF.LOGISTIC (x, a, b) [Function]
CDF.LOGISTIC (x, a, b) [Function]
IDF.LOGISTIC (p, a, b) [Function]
RV.LOGISTIC (a, b) [Function]

Logistic distribution with location parameter a and scale parameter b. Constraints:
b>0,0<p<1.

PDF.LNORMAL (x, a, b) [Function]
CDF.LNORMAL (x, a, b) [Function]
IDF.LNORMAL (p, a, b) [Function]
RV.LNORMAL (a, b) [Function]

Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0,
0<=p<1.

Chapter 7: Mathematical Expressions 61

PDF .NORMAL (x, mu, sigma) [Function]
CDF .NORMAL (x, mu, sigma) [Function]
IDF.NORMAL (p, mu, sigma) [Function]
RV.NORMAL (mu, sigma) [Function]

Normal distribution with mean mu and standard deviation sigma. Constraints: b >
0, 0 < p < 1. Three additional functions are available as shorthand:

CDFNORM (x) [Function]
Equivalent to CDF.NORMAL(x, 0, 1).

PROBIT (p) [Function]
Equivalent to IDF.NORMAL(p, 0, 1).

NORMAL (sigma) [Function]
Equivalent to RV.NORMAL(0, sigma).

PDF.NTAIL (x, a, sigma) [Function]

RV.NTAIL (a, sigma) [Function]

Normal tail distribution with lower limit a and standard deviation sigma. This dis-
tribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.

PDF.PARETO (x, a, b) [Function]
CDF.PARETO (x, a, b) [Function]
IDF.PARETO (p, a, b) [Function]
RV.PARETO (a, b) [Function]

Pareto distribution with threshold parameter a and shape parameter b. Constraints:
a>0,b>0,x>=a,0<=p<1.

PDF.RAYLEIGH (x, sigma) [Function]
CDF.RAYLEIGH (x, sigma) [Function]
IDF.RAYLEIGH (p, sigma) [Function]
RV.RAYLEIGH (sigma) [Function]

Rayleigh distribution with scale parameter sigma. This distribution is a PSPP exten-
sion. Constraints: sigma > 0, x > 0.

PDF.RTAIL (x, a, sigma) [Function]

RV.RTAIL (a, sigma) [Function]
Rayleigh tail distribution with lower limit a and scale parameter sigma. This distri-
bution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.

PDF.T (x, df) [Function]

CDF.T (x, df) [Function]

IDF.T (p, df) [Function]

RV.T (df) [Function]
T-distribution with df degrees of freedom. The noncentral distribution takes an
additional parameter lambda. Constraints: df > 0,0 < p < 1.

PDF.T1G (x, a, b) [Function]

CDF.T1G (x, a, b) [Function]

Chapter 7: Mathematical Expressions 62

IDF.T1G (p, a, b) [Function]
Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: 0 < p < 1.

PDF.T2G (x, a, b) [Function]
CDF.T2G (x, a, b) [Function]
IDF.T2G (p, a, b) [Function]

Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: x > 0,0 < p < 1.

PDF.UNIFORM (x, a, b) [Function]
CDF.UNIFORM (x, a, b) [Function]
IDF.UNIFORM (p, a, b) [Function]

RV.UNIFORM (a, b) [Function]
Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p
<= 1. An additional function is available as shorthand:

UNIFORM (b) [Function]
Equivalent to RV.UNIFORM(0, b).
PDF.WEIBULL (x, a, b) [Function]
CDF.WEIBULL (x, a, b) [Function]
IDF.WEIBULL (p, a, b) [Function]
RV.WEIBULL (a, b) [Function]
Weibull distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0
<=pK< 1.
7.7.10.2 Discrete Distributions
The following discrete distributions are available:
PDF.BERNOULLI (x) [Function]
CDF .BERNOULLI (x, p) [Function]
RV.BERNOULLI (p) [Function]
Bernoulli distribution with probability of success p. Constraints: x =0 or 1,0 <= p
<=1.
PDF.BINOM (x, n, p) [Function]
CDF.BINOM (x, n, p) [Function]
RV.BINOM (n, p) [Function]

Binomial distribution with n trials and probability of success p. Constraints: integer
n>0,0 <= p <=1, integer x <= n.

PDF.GEOM (x, 1, p) [Function]
CDF.GEQM (x, n, p) [Function]
RV.GEOM (n, p) [Function]

Geometric distribution with probability of success p. Constraints: 0 <= p <= 1,
integer x > 0.

Chapter 7: Mathematical Expressions 63

PDF.HYPER (x, a, b, c) [Function]
CDF.HYPER (x, a, b, c) [Function]
RV.HYPER (a, b, ¢) [Function]

Hypergeometric distribution when b objects out of a are drawn and c of the available
objects are distinctive. Constraints: integer a > 0, integer b <= a, integer c <= a,
integer x >= 0.

PDF.LOG (x, p) [Function]

RV.LOG (p) [Function]
Logarithmic distribution with probability parameter p. Constraints: 0 <= p < 1, x
>=1.

PDF.NEGBIN (x, n, p) [Function]

CDF .NEGBIN (x, n, p) [Function]

RV.NEGBIN (n, p) [Function]

Negative binomial distribution with number of successes parameter n and probability
of success parameter p. Constraints: integer n >= 0, 0 < p <= 1, integer x >= 1.

PDF.POISSON (x, mu) [Function]
CDF.POISSON (x, mu) [Function]
RV.POISSON (mu) [Function]

Poisson distribution with mean mu. Constraints: mu > 0, integer x >= 0.

7.8 Operator Precedence

The following table describes operator precedence. Smaller-numbered levels in the table
have higher precedence. Within a level, operations are always performed from left to right.
The first occurrence of ‘-’ represents unary negation, the second binary subtraction.

1. ()
*%

* /

+ -

EQ GE GT LE LT NE
AND NOT OR

No Ot N

Chapter 8: Data Input and Output 64

8 Data Input and Output

Data are the focus of the PspPP language. Each datum belongs to a case (also called an
observation). Each case represents an individual or “experimental unit”. For example, in
the results of a survey, the names of the respondents, their sex, age, etc. and their responses
are all data and the data pertaining to single respondent is a case. This chapter examines the
PSPP commands for defining variables and reading and writing data. There are alternative
commands to read data from predefined sources such as system files or databases (See
Section 9.3 [GET], page 82.)

Note: These commands tell PSPP how to read data, but the data will not
actually be read until a procedure is executed.

8.1 BEGIN DATA
BEGIN DATA.

END DATA.

BEGIN DATA and END DATA can be used to embed raw ASCII data in a PSPP syntax file.
DATA LIST or another input procedure must be used before BEGIN DATA (see Section 8.5
[DATA LIST], page 66). BEGIN DATA and END DATA must be used together. END DATA must
appear by itself on a single line, with no leading white space and exactly one space between
the words END and DATA, like this:

END DATA.

8.2 CLOSE FILE HANDLE

CLOSE FILE HANDLE handle_name.

CLOSE FILE HANDLE disassociates the name of a file handle with a given file. The only
specification is the name of the handle to close. Afterward FILE HANDLE.

The file named INLINE, which represents data entered between BEGIN DATA and END
DATA, cannot be closed. Attempts to close it with CLOSE FILE HANDLE have no effect.

CLOSE FILE HANDLE is a PSPP extension.

8.3 DATAFILE ATTRIBUTE

DATAFILE ATTRIBUTE
ATTRIBUTE=name(’value’) [name(’value’)]. . .
ATTRIBUTE=name|index|(’value’) [name[index](’value’)]. . .
DELETE=name [name]. . .
DELETE=name[index| [name[index]]. . .

DATAFILE ATTRIBUTE adds, modifies, or removes user-defined attributes associated with

the active dataset. Custom data file attributes are not interpreted by PSPP, but they are
saved as part of system files and may be used by other software that reads them.

Use the ATTRIBUTE subcommand to add or modify a custom data file attribute. Specify
the name of the attribute as an identifier (see Section 6.1 [Tokens|, page 28), followed by
the desired value, in parentheses, as a quoted string. Attribute names that begin with $

Chapter 8: Data Input and Output 65

are reserved for PSPP’s internal use, and attribute names that begin with @ or $@ are not
displayed by most PSPP commands that display other attributes. Other attribute names
are not treated specially.

Attributes may also be organized into arrays. To assign to an array element, add an
integer array index enclosed in square brackets ([and 1) between the attribute name and
value. Array indexes start at 1, not 0. An attribute array that has a single element (number
1) is not distinguished from a non-array attribute.

Use the DELETE subcommand to delete an attribute. Specify an attribute name by itself
to delete an entire attribute, including all array elements for attribute arrays. Specify an
attribute name followed by an array index in square brackets to delete a single element of an
attribute array. In the latter case, all the array elements numbered higher than the deleted
element are shifted down, filling the vacated position.

To associate custom attributes with particular variables, instead of with the entire active
dataset, use VARIABLE ATTRIBUTE (see Section 11.15 [VARIABLE ATTRIBUTE], page 107)
instead.

DATAFILE ATTRIBUTE takes effect immediately. It is not affected by conditional and
looping structures such as DO IF or LOOP.

8.4 DATASET commands

DATASET NAME name [WINDOW={ASIS,FRONT}].

DATASET ACTIVATE name [WINDOW={ASIS,FRONT}].

DATASET COPY name [WINDOW={MINIMIZED ,HIDDEN,FRONT}].
DATASET DECLARE name [WINDOW={MINIMIZED,HIDDEN,FRONT}|].
DATASET CLOSE {name,*,ALL}.

DATASET DISPLAY.

The DATASET commands simplify use of multiple datasets within a PSPP session. They
allow datasets to be created and destroyed. At any given time, most PSPP commands work
with a single dataset, called the active dataset.

The DATASET NAME command gives the active dataset the specified name, or if it
already had a name, it renames it. If another dataset already had the given name, that
dataset is deleted.

The DATASET ACTIVATE command selects the named dataset, which must already
exist, as the active dataset. Before switching the active dataset, any pending transforma-
tions are executed, as if EXECUTE had been specified. If the active dataset is unnamed before
switching, then it is deleted and becomes unavailable after switching.

The DATASET COPY command creates a new dataset with the specified name, whose
contents are a copy of the active dataset. Any pending transformations are executed, as
if EXECUTE had been specified, before making the copy. If a dataset with the given name
already exists, it is replaced. If the name is the name of the active dataset, then the active
dataset becomes unnamed.

The DATASET DECLARE command creates a new dataset that is initially “empty,”
that is, it has no dictionary or data. If a dataset with the given name already exists, this has
no effect. The new dataset can be used with commands that support output to a dataset,
e.g. AGGREGATE (see Section 12.1 [AGGREGATE], page 111).

Chapter 8: Data Input and Output 66

The DATASET CLOSE command deletes a dataset. If the active dataset is specified by
name, or if ‘*’ is specified, then the active dataset becomes unnamed. If a different dataset
is specified by name, then it is deleted and becomes unavailable. Specifying ALL deletes all
datasets except for the active dataset, which becomes unnamed.

The DATASET DISPLAY command lists all the currently defined datasets.

Many DATASET commands accept an optional WINDOW subcommand. In the pPSPPIRE
GUI, the value given for this subcommand influences how the dataset’s window is displayed.
Outside the GUI, the WINDOW subcommand has no effect. The valid values are:

ASIS Do not change how the window is displayed. This is the default for DATASET
NAME and DATASET ACTIVATE.

FRONT Raise the dataset’s window to the top. Make it the default dataset for running
syntax.

MINIMIZED
Display the window “minimized” to an icon. Prefer other datasets for running
syntax. This is the default for DATASET COPY and DATASET DECLARE.

HIDDEN Hide the dataset’s window. Prefer other datasets for running syntax.

8.5 DATA LIST

Used to read text or binary data, DATA LIST is the most fundamental data-reading com-
mand. Even the more sophisticated input methods use DATA LIST commands as a building
block. Understanding DATA LIST is important to understanding how to use PSPP to read
your data files.

There are two major variants of DATA LIST, which are fixed format and free format. In
addition, free format has a minor variant, list format, which is discussed in terms of its
differences from vanilla free format.

Each form of DATA LIST is described in detail below.

See Section 9.4 [GET DATA], page 83, for a command that offers a few enhancements
over DATA LIST and that may be substituted for DATA LIST in many situations.

8.5.1 DATA LIST FIXED

DATA LIST [FIXED)]
{TABLE,NOTABLE}
[FILE="file_name’ [ENCODING="encoding’]|
[RECORDS=record_count]
[END=end_var]
[SKIP=record_count]
/[line_no| var_spec. . .

where each var_spec takes one of the forms
var_list start-end [type_spec]
var_list (fortran_spec)

DATA LIST FIXED is used to read data files that have values at fixed positions on each
line of single-line or multiline records. The keyword FIXED is optional.

Chapter 8: Data Input and Output 67

The FILE subcommand must be used if input is to be taken from an external file. It may
be used to specify a file name as a string or a file handle (see Section 6.9 [File Handles],
page 44). If the FILE subcommand is not used, then input is assumed to be specified
within the command file using BEGIN DATA. . .END DATA (see Section 8.1 [BEGIN DATA],
page 64). The ENCODING subcommand may only be used if the FILE subcommand is also
used. It specifies the character encoding of the file. See Section 16.16 [INSERT], page 159,
for information on supported encodings.

The optional RECORDS subcommand, which takes a single integer as an argument, is used
to specify the number of lines per record. If RECORDS is not specified, then the number of
lines per record is calculated from the list of variable specifications later in DATA LIST.

The END subcommand is only useful in conjunction with INPUT PROGRAM. See Section 8.9
[INPUT PROGRAM], page 73, for details.

The optional SKIP subcommand specifies a number of records to skip at the beginning
of an input file. It can be used to skip over a row that contains variable names, for example.

DATA LIST can optionally output a table describing how the data file will be read. The
TABLE subcommand enables this output, and NOTABLE disables it. The default is to output
the table.

The list of variables to be read from the data list must come last. Each line in the
data record is introduced by a slash (‘/’). Optionally, a line number may follow the slash.
Following, any number of variable specifications may be present.

Each variable specification consists of a list of variable names followed by a description
of their location on the input line. Sets of variables may be specified using the DATA LIST
TO convention (see Section 6.7.3 [Sets of Variables], page 34). There are two ways to specify
the location of the variable on the line: columnar style and FORTRAN style.

In columnar style, the starting column and ending column for the field are specified after
the variable name, separated by a dash (‘-’). For instance, the third through fifth columns
on a line would be specified ‘3-5’. By default, variables are considered to be in ‘F’ format
(see Section 6.7.4 [Input and Output Formats|, page 34). (This default can be changed; see
Section 16.20 [SET], page 161 for more information.)

In columnar style, to use a variable format other than the default, specify the format
type in parentheses after the column numbers. For instance, for alphanumeric ‘A’ format,
use ‘(4)’.

In addition, implied decimal places can be specified in parentheses after the column
numbers. As an example, suppose that a data file has a field in which the characters ‘1234’
should be interpreted as having the value 12.34. Then this field has two implied decimal
places, and the corresponding specification would be ‘(2)’. If a field that has implied
decimal places contains a decimal point, then the implied decimal places are not applied.

Changing the variable format and adding implied decimal places can be done together;
for instance, ‘(N,5)’.

When using columnar style, the input and output width of each variable is computed
from the field width. The field width must be evenly divisible into the number of variables
specified.

FORTRAN style is an altogether different approach to specifying field locations. With
this approach, a list of variable input format specifications, separated by commas, are

Chapter 8: Data Input and Output 68

placed after the variable names inside parentheses. Each format specifier advances as many
characters into the input line as it uses.

Implied decimal places also exist in FORTRAN style. A format specification with d
decimal places also has d implied decimal places.

In addition to the standard format specifiers (see Section 6.7.4 [Input and Output For-
mats|, page 34), FORTRAN style defines some extensions:

X Advance the current column on this line by one character position.

Tx Set the current column on this line to column x, with column numbers consid-
ered to begin with 1 at the left margin.

NEWRECx Skip forward x lines in the current record, resetting the active column to the
left margin.

Repeat count
Any format specifier may be preceded by a number. This causes the action of
that format specifier to be repeated the specified number of times.

(specl, ..., specN)
Group the given specifiers together. This is most useful when preceded by a
repeat count. Groups may be nested arbitrarily.

FORTRAN and columnar styles may be freely intermixed. Columnar style leaves the
active column immediately after the ending column specified. Record motion using NEWREC
in FORTRAN style also applies to later FORTRAN and columnar specifiers.

Examples
1.
DATA LIST TABLE /NAME 1-10 (A) INFO1 TO INFO3 12-17 (1).

BEGIN DATA.

John Smith 102311
Bob Arnold 122015
Bill Yates 918 6
END DATA.

Defines the following variables:
e NAME, a 10-character-wide string variable, in columns 1 through 10.
e INFO1, a numeric variable, in columns 12 through 13.
e INF02, a numeric variable, in columns 14 through 15.

e INF03, a numeric variable, in columns 16 through 17.

The BEGIN DATA/END DATA commands cause three cases to be defined:

Case NAME INFO1 INFO2 INFO03
1 John Smith 10 23 11
2 Bob Arnold 12 20 15
3 Bill Yates 9 18 6

The TABLE keyword causes PSPP to print out a table describing the four variables
defined.

Chapter 8: Data Input and Output 69

DAT LIS FIL="survey.dat"
/ID 1-5 NAME 7-36 (A) SURNAME 38-67 (A) MINITIAL 69 (A)
/Q01 TO Q50 7-56
/.
Defines the following variables:

e ID, a numeric variable, in columns 1-5 of the first record.

e NAME, a 30-character string variable, in columns 7-36 of the first record.

e SURNAME, a 30-character string variable, in columns 38-67 of the first record.

e MINITIAL, a l-character string variable, in column 69 of the first record.

e Fifty variables QO01, Q02, QO03, . .., Q49, Q50, all numeric, Q01 in column 7, Q02 in
column 8§, ..., Q49 in column 55, Q50 in column 56, all in the second record.

Cases are separated by a blank record.
Data is read from file survey.dat in the current directory.

This example shows keywords abbreviated to their first 3 letters.

8.5.2 DATA LIST FREE

DATA LIST FREE
((TAB,}, ...)]
[{NOTABLE,TABLE}]
[FILE="file_name’ [ENCODING="encoding’]]
[SKIP=record_cnt]
/var_spec. . .

where each var_spec takes one of the forms
var_list [(type_spec)]
var_list *

In free format, the input data is, by default, structured as a series of fields separated
by spaces, tabs, or line breaks. If the current DECIMAL separator is DOT (see Section 16.20
[SET], page 161), then commas are also treated as field separators. Each field’s content
may be unquoted, or it may be quoted with a pairs of apostrophes (‘’’) or double quotes
(‘). Unquoted white space separates fields but is not part of any field. Any mix of spaces,
tabs, and line breaks is equivalent to a single space for the purpose of separating fields, but
consecutive commas will skip a field.

Alternatively, delimiters can be specified explicitly, as a parenthesized, comma-separated
list of single-character strings immediately following FREE. The word TAB may also be
used to specify a tab character as a delimiter. When delimiters are specified explicitly, only
the given characters, plus line breaks, separate fields. Furthermore, leading spaces at the
beginnings of fields are not trimmed, consecutive delimiters define empty fields, and no form
of quoting is allowed.

The NOTABLE and TABLE subcommands are as in DATA LIST FIXED above. NOTABLE is
the default.

The FILE, SKIP, and ENCODING subcommands are as in DATA LIST FIXED above.

Chapter 8: Data Input and Output 70

The variables to be parsed are given as a single list of variable names. This list must
be introduced by a single slash (‘/’). The set of variable names may contain format spec-
ifications in parentheses (see Section 6.7.4 [Input and Output Formats|, page 34). Format
specifications apply to all variables back to the previous parenthesized format specification.

In addition, an asterisk may be used to indicate that all variables preceding it are to
have input/output format ‘F8.0’.

Specified field widths are ignored on input, although all normal limits on field width
apply, but they are honored on output.

8.5.3 DATA LIST LIST

DATA LIST LIST
[({TAB,¢’}, . ..)]
[{NOTABLE,TABLE}]
[FILE="file_name’ [ENCODING="encoding’]]
[SKIP=record_count]
/var_spec. . .

where each var_spec takes one of the forms
var_list [(type_spec)]
var_list *

With one exception, DATA LIST LIST is syntactically and semantically equivalent to DATA
LIST FREE. The exception is that each input line is expected to correspond to exactly one
input record. If more or fewer fields are found on an input line than expected, an appropriate
diagnostic is issued.

8.6 END CASE

END CASE.

END CASE is used only within INPUT PROGRAM to output the current case. See Section 8.9
[INPUT PROGRAM], page 73, for details.

8.7 END FILE

END FILE.

END FILE is used only within INPUT PROGRAM to terminate the current input program.
See Section 8.9 [INPUT PROGRAM], page 73.

8.8 FILE HANDLE

For text files:

FILE HANDLE handle_name
/NAME="file_name
[/MODE=CHARACTER]
[/ENDS={CR,CRLF}]
JTABWIDTH=tab_width
[ENCODING="encoding’]

Chapter 8: Data Input and Output 71

For binary files in native encoding with fixed-length records:
FILE HANDLE handle_name
/NAME="file_name’
/MODE=IMAGE
[/LRECL=rec_len]
[ENCODING="encoding’]

For binary files in native encoding with variable-length records:
FILE HANDLE handle_name
/NAME="file_name’
/MODE=BINARY
[/LRECL=rec_len]
[ENCODING="encoding’]

For binary files encoded in EBCDIC:
FILE HANDLE handle_name
/NAME="file_name’
/MODE=360
/RECFORM={FIXED,VARIABLE,SPANNED}
[/LRECL=rec_len]
[ENCODING="encoding’]

Use FILE HANDLE to associate a file handle name with a file and its attributes, so that
later commands can refer to the file by its handle name. Names of text files can be specified
directly on commands that access files, so that FILE HANDLE is only needed when a file is not
an ordinary file containing lines of text. However, FILE HANDLE may be used even for text

files, and it may be easier to specify a file’s name once and later refer to it by an abstract
handle.

Specify the file handle name as the identifier immediately following the FILE HANDLE
command name. The identifier INLINE is reserved for representing data embedded in the
syntax file (see Section 8.1 [BEGIN DATA], page 64) The file handle name must not already
have been used in a previous invocation of FILE HANDLE, unless it has been closed by an
intervening command (see Section 8.2 [CLOSE FILE HANDLE], page 64).

The effect and syntax of FILE HANDLE depends on the selected MODE:

e In CHARACTER mode, the default, the data file is read as a text file. Each text line
is read as one record.

In CHARACTER mode only, tabs are expanded to spaces by input programs, except
by DATA LIST FREE with explicitly specified delimiters. Each tab is 4 characters wide
by default, but TABWIDTH (a PSPP extension) may be used to specify an alternate
width. Use a TABWIDTH of 0 to suppress tab expansion.

A file written in CHARACTER mode by default uses the line ends of the system on
which PSPP is running, that is, on Windows, the default is CR LF line ends, and on
other systems the default is LF only. Specify ENDS as CR or CRLF to override the

default. PSPP reads files using either convention on any kind of system, regardless of
ENDS.

Chapter 8: Data Input and Output 72

e In IMAGE mode, the data file is treated as a series of fixed-length binary records.
LRECL should be used to specify the record length in bytes, with a default of 1024.
On input, it is an error if an IMAGE file’s length is not a integer multiple of the record
length. On output, each record is padded with spaces or truncated, if necessary, to
make it exactly the correct length.

e In BINARY mode, the data file is treated as a series of variable-length binary records.
LRECL may be specified, but its value is ignored. The data for each record is both
preceded and followed by a 32-bit signed integer in little-endian byte order that specifies
the length of the record. (This redundancy permits records in these files to be efficiently
read in reverse order, although PSPP always reads them in forward order.) The length
does not include either integer.

e Mode 360 reads and writes files in formats first used for tapes in the 1960s on IBM
mainframe operating systems and still supported today by the modern successors of
those operating systems. For more information, see OS/400 Tape and Diskette Device
Programming, available on IBM’s website.

Alphanumeric data in mode 360 files are encoded in EBCDIC. psSPP translates
EBCDIC to or from the host’s native format as necessary on input or output, using
an ASCII/EBCDIC translation that is one-to-one, so that a “round trip” from ASCII
to EBCDIC back to ASCII, or vice versa, always yields exactly the original data.

The RECFORM subcommand is required in mode 360. The precise file format depends
on its setting:

F

FIXED This record format is equivalent to IMAGE mode, except for EBCDIC
translation.
IBM documentation calls this *F (fixed-length, deblocked) format.

v

VARIABLE

The file comprises a sequence of zero or more variable-length blocks. Each
block begins with a 4-byte block descriptor word (BDW). The first two
bytes of the BDW are an unsigned integer in big-endian byte order that
specifies the length of the block, including the BDW itself. The other two
bytes of the BDW are ignored on input and written as zeros on output.

Following the BDW, the remainder of each block is a sequence of one or
more variable-length records, each of which in turn begins with a 4-byte
record descriptor word (RDW) that has the same format as the BDW.
Following the RDW, the remainder of each record is the record data.

The maximum length of a record in VARIABLE mode is 65,527 bytes:
65,535 bytes (the maximum value of a 16-bit unsigned integer), minus 4
bytes for the BDW, minus 4 bytes for the RDW.

In mode VARIABLE, LRECL specifies a maximum, not a fixed, record
length, in bytes. The default is 8,192.

IBM documentation calls this *VB (variable-length, blocked, unspanned)
format.

Chapter 8: Data Input and Output 73

VS

SPANNED
The file format is like that of VARIABLE mode, except that logical records
may be split among multiple physical records (called segments) or blocks.
In SPANNED mode, the third byte of each RDW is called the segment con-
trol character (SCC). Odd SCC values cause the segment to be appended
to a record buffer maintained in memory; even values also append the
segment and then flush its contents to the input procedure. Canonically,
SCC value 0 designates a record not spanned among multiple segments,
and values 1 through 3 designate the first segment, the last segment, or
an intermediate segment, respectively, within a multi-segment record. The
record buffer is also flushed at end of file regardless of the final record’s
SCC.

The maximum length of a logical record in VARIABLE mode is limited
only by memory available to PSPP. Segments are limited to 65,527 bytes,
as in VARIABLE mode.

This format is similar to what IBM documentation call *VS (variable-
length, deblocked, spanned) format.

In mode 360, fields of type A that extend beyond the end of a record read from disk
are padded with spaces in the host’s native character set, which are then translated
from EBCDIC to the native character set. Thus, when the host’s native character set
is based on ASCII, these fields are effectively padded with character X?80°. This wart
is implemented for compatibility.

The NAME subcommand specifies the name of the file associated with the handle. It is
required in all modes but SCRATCH mode, in which its use is forbidden.

The ENCODING subcommand specifies the encoding of text in the file. For reading text
files in CHARACTER mode, all of the forms described for ENCODING on the INSERT
command are supported (see Section 16.16 [INSERT], page 159). For reading in other file-
based modes, encoding autodetection is not supported; if the specified encoding requests
autodetection then the default encoding will be used. This is also true when a file handle
is used for writing a file in any mode.

8.9 INPUT PROGRAM
INPUT PROGRAM.

. input commands . ..

END INPUT PROGRAM.

INPUT PROGRAM. . .END INPUT PROGRAM specifies a complex input program. By placing
data input commands within INPUT PROGRAM, PSPP programs can take advantage of more
complex file structures than available with only DATA LIST.

The first sort of extended input program is to simply put multiple DATA LIST commands
within the INPUT PROGRAM. This will cause all of the data files to be read in parallel. Input
will stop when end of file is reached on any of the data files.

Transformations, such as conditional and looping constructs, can also be included within
INPUT PROGRAM. These can be used to combine input from several data files in more complex
ways. However, input will still stop when end of file is reached on any of the data files.

Chapter 8: Data Input and Output 74

To prevent INPUT PROGRAM from terminating at the first end of file, use the END subcom-
mand on DATA LIST. This subcommand takes a variable name, which should be a numeric
scratch variable (see Section 6.7.5 [Scratch Variables], page 43). (It need not be a scratch
variable but otherwise the results can be surprising.) The value of this variable is set to 0
when reading the data file, or 1 when end of file is encountered.

Two additional commands are useful in conjunction with INPUT PROGRAM. END CASE is
the first. Normally each loop through the INPUT PROGRAM structure produces one case. END
CASE controls exactly when cases are output. When END CASE is used, looping from the end
of INPUT PROGRAM to the beginning does not cause a case to be output.

END FILE is the second. When the END subcommand is used on DATA LIST, there is no
way for the INPUT PROGRAM construct to stop looping, so an infinite loop results. END FILE,
when executed, stops the flow of input data and passes out of the INPUT PROGRAM structure.

INPUT PROGRAM must contain at least one DATA LIST or END FILE command.
All this is very confusing. A few examples should help to clarify.

INPUT PROGRAM.
DATA LIST NOTABLE FILE=’a.data’/X 1-10.
DATA LIST NOTABLE FILE=’b.data’/Y 1-10.
END INPUT PROGRAM.
LIST.

The example above reads variable X from file a.data and variable Y from file b.data.
If one file is shorter than the other then the extra data in the longer file is ignored.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF NOT #A.
DATA LIST NOTABLE END=#A FILE=’a.data’/X 1-10.
END IF.
DO IF NOT #B.
DATA LIST NOTABLE END=#B FILE=’b.data’/Y 1-10.
END IF.
DO IF #A AND #B.
END FILE.
END IF.
END CASE.
END INPUT PROGRAM.
LIST.

The above example reads variable X from a.data and variable Y from b.data. If one file
is shorter than the other then the missing field is set to the system-missing value alongside
the present value for the remaining length of the longer file.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF #A.
DATA LIST NOTABLE END=#B FILE=’b.data’/X 1-10.
DO IF #B.

Chapter 8: Data Input and Output 75

END FILE.
ELSE.
END CASE.
END IF.
ELSE.
DATA LIST NOTABLE END=#A FILE=’a.data’/X 1-10.
DO IF NOT #A.
END CASE.
END IF.
END IF.
END INPUT PROGRAM.

LIST.

The above example reads data from file a.data, then from b.data, and concatenates
them into a single active dataset.

INPUT PROGRAM.
NUMERIC #EQOF.

LOOP IF NOT #EQOF.
DATA LIST NOTABLE END=#EOF FILE=’a.data’/X 1-10.
DO IF NOT #EOF.
END CASE.
END IF.
END LOOP.

COMPUTE #EOF = 0.
LOOP IF NOT #EQOF.
DATA LIST NOTABLE END=#EOF FILE=’b.data’/X 1-10.
DO IF NOT #EOF.
END CASE.
END IF.
END LOOP.

END FILE.
END INPUT PROGRAM.
LIST.

The above example does the same thing as the previous example, in a different way.

INPUT PROGRAM.
LOOP #I=1 TO 50.
COMPUTE X=UNIFORM(10).
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
LIST/FORMAT=NUMBERED.

The above example causes an active dataset to be created consisting of 50 random
variates between 0 and 10.

Chapter 8: Data Input and Output 76

8.10 LIST

LIST
/VARIABLES=var_list
/CASES=FROM start_index TO end_index BY incr_index
/FORMAT={UNNUMBERED ,NUMBERED} {WRAP,SINGLE}

The LIST procedure prints the values of specified variables to the listing file.

The VARIABLES subcommand specifies the variables whose values are to be printed.
Keyword VARIABLES is optional. If VARIABLES subcommand is not specified then all
variables in the active dataset are printed.

The CASES subcommand can be used to specify a subset of cases to be printed. Specify
FROM and the case number of the first case to print, TO and the case number of the last case
to print, and BY and the number of cases to advance between printing cases, or any subset
of those settings. If CASES is not specified then all cases are printed.

The FORMAT subcommand can be used to change the output format. NUMBERED will print
case numbers along with each case; UNNUMBERED, the default, causes the case numbers to
be omitted. The WRAP and SINGLE settings are currently not used.

Case numbers start from 1. They are counted after all transformations have been con-
sidered.

LIST is a procedure. It causes the data to be read.

8.11 NEW FILE
NEW FILE.

NEW FILE command clears the dictionary and data from the current active dataset.

8.12 PRINT

PRINT
[OUTFILE="file_name’]
[RECORDS=n_lines|
[{NOTABLE,TABLE}]
[ENCODING="encoding’]
[/[line_no] arg. . .]

arg takes one of the following forms:
'string’ [start]
var_list start-end [type_spec]
var_list (fortran_spec)
var_list *

The PRINT transformation writes variable data to the listing file or an output file. PRINT
is executed when a procedure causes the data to be read. Follow PRINT by EXECUTE to print
variable data without invoking a procedure (see Section 16.11 [EXECUTE], page 158).

All PRINT subcommands are optional. If no strings or variables are specified, PRINT
outputs a single blank line.

Chapter 8: Data Input and Output 77

The OUTFILE subcommand specifies the file to receive the output. The file may be a file
name as a string or a file handle (see Section 6.9 [File Handles], page 44). If OUTFILE is not
present then output will be sent to PSPP’s output listing file. When OUTFILE is present, a
space is inserted at beginning of each output line, even lines that otherwise would be blank.

The ENCODING subcommand may only be used if the OUTFILE subcommand is also used.
It specifies the character encoding of the file. See Section 16.16 [INSERT], page 159, for
information on supported encodings.

The RECORDS subcommand specifies the number of lines to be output. The number of
lines may optionally be surrounded by parentheses.

TABLE will cause the PRINT command to output a table to the listing file that describes
what it will print to the output file. NOTABLE, the default, suppresses this output table.

Introduce the strings and variables to be printed with a slash (‘/”). Optionally, the slash
may be followed by a number indicating which output line will be specified. In the absence
of this line number, the next line number will be specified. Multiple lines may be specified
using multiple slashes with the intended output for a line following its respective slash.

Literal strings may be printed. Specify the string itself. Optionally the string may be
followed by a column number, specifying the column on the line where the string should
start. Otherwise, the string will be printed at the current position on the line.

Variables to be printed can be specified in the same ways as available for DATA LIST
FIXED (see Section 8.5.1 [DATA LIST FIXED], page 66). In addition, a variable list may be
followed by an asterisk (‘*’), which indicates that the variables should be printed in their
dictionary print formats, separated by spaces. A variable list followed by a slash or the end
of command will be interpreted the same way.

If a FORTRAN type specification is used to move backwards on the current line, then
text is written at that point on the line, the line will be truncated to that length, although
additional text being added will again extend the line to that length.

8.13 PRINT EJECT

PRINT EJECT
OUTFILE="file_name’
RECORDS=n_lines
{NOTABLE,TABLE}
/[line_no] arg. . .

arg takes one of the following forms:
'string’ [start-end]
var_list start-end [type_spec]
var_list (fortran_spec)
var_list *

PRINT EJECT advances to the beginning of a new output page in the listing file or output
file. It can also output data in the same way as PRINT.

All PRINT EJECT subcommands are optional.

Without OUTFILE, PRINT EJECT ejects the current page in the listing file, then it produces
other output, if any is specified.

Chapter 8: Data Input and Output 78

With OUTFILE, PRINT EJECT writes its output to the specified file. The first line of
output is written with ‘1’ inserted in the first column. Commonly, this is the only line of
output. If additional lines of output are specified, these additional lines are written with a
space inserted in the first column, as with PRINT.

See Section 8.12 [PRINT], page 76, for more information on syntax and usage.

8.14 PRINT SPACE

PRINT SPACE [OUTFILE='file_name’] [ENCODING=’encoding’] [n_lines].
PRINT SPACE prints one or more blank lines to an output file.

The OUTFILE subcommand is optional. It may be used to direct output to a file specified
by file name as a string or file handle (see Section 6.9 [File Handles], page 44). If OUTFILE
is not specified then output will be directed to the listing file.

The ENCODING subcommand may only be used if OUTFILE is also used. It specifies the
character encoding of the file. See Section 16.16 [INSERT], page 159, for information on
supported encodings.

n_lines is also optional. If present, it is an expression (see Chapter 7 [Expressions],
page 46) specifying the number of blank lines to be printed. The expression must evaluate
to a nonnegative value.

8.15 REREAD
REREAD [FILE=handle] [COLUMN=column| [ENCODING='encoding’].

The REREAD transformation allows the previous input line in a data file already processed
by DATA LIST or another input command to be re-read for further processing.

The FILE subcommand, which is optional, is used to specify the file to have its line re-
read. The file must be specified as the name of a file handle (see Section 6.9 [File Handles],
page 44). If FILE is not specified then the last file specified on DATA LIST will be assumed
(last file specified lexically, not in terms of flow-of-control).

By default, the line re-read is re-read in its entirety. With the COLUMN subcommand, a
prefix of the line can be exempted from re-reading. Specify an expression (see Chapter 7
[Expressions|, page 46) evaluating to the first column that should be included in the re-read
line. Columns are numbered from 1 at the left margin.

The ENCODING subcommand may only be used if the FILE subcommand is also used.
It specifies the character encoding of the file. See Section 16.16 [INSERT], page 159, for
information on supported encodings.

Issuing REREAD multiple times will not back up in the data file. Instead, it will re-read
the same line multiple times.

8.16 REPEATING DATA

REPEATING DATA
/STARTS=start-end
/OCCURS=n_occurs
J/FILE="file_name’
JLENGTH=length

Chapter 8: Data Input and Output 79

/CONTINUED[=cont_start-cont_end]
/ID=id_start-id_end=id_var
/{TABLE,NOTABLE}
/DATA=var_spec. . .

where each var_spec takes one of the forms
var_list start-end [type_spec]
var_list (fortran_spec)

REPEATING DATA parses groups of data repeating in a uniform format, possibly with sev-
eral groups on a single line. Each group of data corresponds with one case. REPEATING
DATA may only be used within an INPUT PROGRAM structure (see Section 8.9 [INPUT PRO-
GRAM], page 73). When used with DATA LIST, it can be used to parse groups of cases that
share a subset of variables but differ in their other data.

The STARTS subcommand is required. Specify a range of columns, using literal numbers
or numeric variable names. This range specifies the columns on the first line that are used
to contain groups of data. The ending column is optional. If it is not specified, then the
record width of the input file is used. For the inline file (see Section 8.1 [BEGIN DATA],
page 64) this is 80 columns; for a file with fixed record widths it is the record width; for
other files it is 1024 characters by default.

The OCCURS subcommand is required. It must be a number or the name of a numeric
variable. Its value is the number of groups present in the current record.

The DATA subcommand is required. It must be the last subcommand specified. It is used
to specify the data present within each repeating group. Column numbers are specified
relative to the beginning of a group at column 1. Data is specified in the same way as with
DATA LIST FIXED (see Section 8.5.1 [DATA LIST FIXED], page 66).

All other subcommands are optional.

FILE specifies the file to read, either a file name as a string or a file handle (see Section 6.9
[File Handles|, page 44). If FILE is not present then the default is the last file handle used
on DATA LIST (lexically, not in terms of flow of control).

By default REPEATING DATA will output a table describing how it will parse the input
data. Specifying NOTABLE will disable this behavior; specifying TABLE will explicitly enable
it.

The LENGTH subcommand specifies the length in characters of each group. If it is not
present then length is inferred from the DATA subcommand. LENGTH can be a number or
a variable name.

Normally all the data groups are expected to be present on a single line. Use the
CONTINUED command to indicate that data can be continued onto additional lines. If data
on continuation lines starts at the left margin and continues through the entire field width,
no column specifications are necessary on CONTINUED. Otherwise, specify the possible range
of columns in the same way as on STARTS.

When data groups are continued from line to line, it is easy for cases to get out of sync
through careless hand editing. The ID subcommand allows a case identifier to be present
on each line of repeating data groups. REPEATING DATA will check for the same identifier
on each line and report mismatches. Specify the range of columns that the identifier will

Chapter 8: Data Input and Output 80

occupy, followed by an equals sign (‘=") and the identifier variable name. The variable must
already have been declared with NUMERIC or another command.

REPEATING DATA should be the last command given within an INPUT PROGRAM. It should
not be enclosed within a LOOP structure (see Section 14.4 [LOOP], page 126). Use DATA
LIST before, not after, REPEATING DATA.

8.17 WRITE

WRITE
OUTFILE="file_name’
RECORDS=n_lines
{NOTABLE,TABLE}
/[line_no| arg. ..

arg takes one of the following forms:
'string’ [start-end]
var_list start-end [type_spec]
var_list (fortran_spec)
var_list *

WRITE writes text or binary data to an output file.

See Section 8.12 [PRINT], page 76, for more information on syntax and usage. PRINT
and WRITE differ in only a few ways:

e WRITE uses write formats by default, whereas PRINT uses print formats.

e PRINT inserts a space between variables unless a format is explicitly specified, but WRITE
never inserts space between variables in output.

e PRINT inserts a space at the beginning of each line that it writes to an output file (and
PRINT EJECT inserts ‘1’ at the beginning of each line that should begin a new page),
but WRITE does not.

e PRINT outputs the system-missing value according to its specified output format,
whereas WRITE outputs the system-missing value as a field filled with spaces. Binary
formats are an exception.

Chapter 9: System and Portable File I/O 81

9 System and Portable File I/0

The commands in this chapter read, write, and examine system files and portable files.

9.1 APPLY DICTIONARY
APPLY DICTIONARY FROM={"file_name’ file_handle}.

APPLY DICTIONARY applies the variable labels, value labels, and missing values taken
from a file to corresponding variables in the active dataset. In some cases it also updates
the weighting variable.

Specify a system file or portable file’s name, a data set name (see Section 6.7 [Datasets],
page 32), or a file handle name (see Section 6.9 [File Handles|, page 44). The dictionary in
the file will be read, but it will not replace the active dataset’s dictionary. The file’s data
will not be read.

Only variables with names that exist in both the active dataset and the system file are
considered. Variables with the same name but different types (numeric, string) will cause
an error message. Otherwise, the system file variables’ attributes will replace those in their
matching active dataset variables:

e If a system file variable has a variable label, then it will replace the variable label of
the active dataset variable. If the system file variable does not have a variable label,
then the active dataset variable’s variable label, if any, will be retained.

e If the system file variable has custom attributes (see Section 11.15 [VARIABLE AT-
TRIBUTE], page 107), then those attributes replace the active dataset variable’s cus-
tom attributes. If the system file variable does not have custom attributes, then the
active dataset variable’s custom attributes, if any, will be retained.

e If the active dataset variable is numeric or short string, then value labels and missing
values, if any, will be copied to the active dataset variable. If the system file variable
does not have value labels or missing values, then those in the active dataset variable,
if any, will not be disturbed.

In addition to properties of variables, some properties of the active file dictionary as a
whole are updated:

e If the system file has custom attributes (see Section 8.3 [DATAFILE ATTRIBUTE],
page 64), then those attributes replace the active dataset variable’s custom attributes.

e If the active dataset has a weighting variable (see Section 13.7 [WEIGHT], page 124),
and the system file does not, or if the weighting variable in the system file does not
exist in the active dataset, then the active dataset weighting variable, if any, is re-
tained. Otherwise, the weighting variable in the system file becomes the active dataset
weighting variable.

APPLY DICTIONARY takes effect immediately. It does not read the active dataset. The
system file is not modified.

Chapter 9: System and Portable File I/O 82

9.2 EXPORT

EXPORT
/OUTFILE="file_name’
J/UNSELECTED={RETAIN,DELETE}
/DIGITS=n
/DROP=var_list
JKEEP=var_list
/RENAME=(src_.names=target_names). . .
JTYPE={COMM,TAPE}
/MAP

The EXPORT procedure writes the active dataset’s dictionary and data to a specified
portable file.

By default, cases excluded with FILTER, are written to the file. These can be excluded
by specifying DELETE on the UNSELECTED subcommand. Specifying RETAIN makes the
default explicit.

Portable files express real numbers in base 30. Integers are always expressed to the
maximum precision needed to make them exact. Non-integers are, by default, expressed
to the machine’s maximum natural precision (approximately 15 decimal digits on many
machines). If many numbers require this many digits, the portable file may significantly
increase in size. As an alternative, the DIGITS subcommand may be used to specify the
number of decimal digits of precision to write. DIGITS applies only to non-integers.

The OUTFILE subcommand, which is the only required subcommand, specifies the
portable file to be written as a file name string or a file handle (see Section 6.9 [File
Handles|, page 44).

DROP, KEEP, and RENAME follow the same format as the SAVE procedure (see Section 9.6
[SAVE], page 89).

The TYPE subcommand specifies the character set for use in the portable file. Its value
is currently not used.

The MAP subcommand is currently ignored.

EXPORT is a procedure. It causes the active dataset to be read.

9.3 GET

GET
JFILE={"file_name’ file_handle}
/DROP=var_list
JKEEP=var_list
/RENAME=(src_.names=target_names). . .
JENCODING="encoding’

GET clears the current dictionary and active dataset and replaces them with the dictio-
nary and data from a specified file.

The FILE subcommand is the only required subcommand. Specify the SPSS system file,
SPSS/PC+ system file, or SPSS portable file to be read as a string file name or a file handle
(see Section 6.9 [File Handles|, page 44).

Chapter 9: System and Portable File I/O 83

By default, all the variables in a file are read. The DROP subcommand can be used to
specify a list of variables that are not to be read. By contrast, the KEEP subcommand can
be used to specify variable that are to be read, with all other variables not read.

Normally variables in a file retain the names that they were saved under. Use the RENAME
subcommand to change these names. Specify, within parentheses, a list of variable names
followed by an equals sign (‘=’) and the names that they should be renamed to. Multiple
parenthesized groups of variable names can be included on a single RENAME subcommand.
Variables’ names may be swapped using a RENAME subcommand of the form /RENAME=(A
B=B A).

Alternate syntax for the RENAME subcommand allows the parentheses to be eliminated.
When this is done, only a single variable may be renamed at once. For instance,
/RENAME=A=B. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are executed in left-to-right order. Each may be present any
number of times. GET never modifies a file on disk. Only the active dataset read from the
file is affected by these subcommands.

PSPP automatically detects the encoding of string data in the file, when possible.
The character encoding of old SPSS system files cannot always be guessed correctly,
and SPSS/PC+ system files do not include any indication of their encoding. Specify
the ENCODING subcommand with an TANA character set name as its string argument to
override the default. Use SYSFILE INFO to analyze the encodings that might be valid for a
system file. The ENCODING subcommand is a PSPP extension.

GET does not cause the data to be read, only the dictionary. The data is read later, when
a procedure is executed.

Use of GET to read a portable file is a PSPP extension.

9.4 GET DATA

GET DATA
/TYPE={GNM,ODS,PSQL,TXT}
.. .additional subcommands depending on TYPE. ..
The GET DATA command is used to read files and other data sources created by other
applications. When this command is executed, the current dictionary and active dataset
are replaced with variables and data read from the specified source.

The TYPE subcommand is mandatory and must be the first subcommand specified. It
determines the type of the file or source to read. PSPP currently supports the following file

types:

GNM Spreadsheet files created by Gnumeric (http://gnumeric.org).

ODS Spreadsheet files in OpenDocument format (http://opendocumentformat .
org).

PSQL Relations from PostgreSQL databases (http://postgresql.org).

TXT Textual data files in columnar and delimited formats.

Each supported file type has additional subcommands, explained in separate sections
below.

http://gnumeric.org
http://opendocumentformat.org
http://opendocumentformat.org
http://postgresql.org

Chapter 9: System and Portable File I/O 84

9.4.1 Spreadsheet Files

GET DATA /TYPE={GNM, ODS}
JFILE={"file_name’}
/SHEET={NAME ’sheet_name’, INDEX n}
/CELLRANGE={RANGE ’'range’, FULL}
/READNAMES={ON, OFF}
/ASSUMEDSTRWIDTH=n.

Gnumeric spreadsheets (http://gnumeric.org), and spreadsheets in OpenDocument
format (http://libreplanet .org/wiki/Group:0OpenDocument/Software) can be read
using the GET DATA command. Use the TYPE subcommand to indicate the file’s format.
/TYPE=GNM indicates Gnumeric files, /TYPE=O0DS indicates OpenDocument. The
FILE subcommand is mandatory. Use it to specify the name file to be read. All other
subcommands are optional.

The format of each variable is determined by the format of the spreadsheet cell containing
the first datum for the variable. If this cell is of string (text) format, then the width of the
variable is determined from the length of the string it contains, unless the ASSUMEDSTRWIDTH
subcommand is given.

The SHEET subcommand specifies the sheet within the spreadsheet file to read. There
are two forms of the SHEET subcommand. In the first form, /SHEET=name sheet_name, the
string sheet_name is the name of the sheet to read. In the second form, /SHEET=index idx,
idx is a integer which is the index of the sheet to read. The first sheet has the index 1. If
the SHEET subcommand is omitted, then the command will read the first sheet in the file.

The CELLRANGE subcommand specifies the range of cells within the sheet to read. If
the subcommand is given as /CELLRANGE=FULL, then the entire sheet is read. To read only
part of a sheet, use the form /CELLRANGE=range ’top_left_cell:bottom_right_cell’.
For example, the subcommand /CELLRANGE=range ’C3:P19’ reads columns C-P, and rows
3-19 inclusive. If no CELLRANGE subcommand is given, then the entire sheet is read.

If /READNAMES=0N is specified, then the contents of cells of the first row are used as the
names of the variables in which to store the data from subsequent rows. This is the default.
If /READNAMES=0FF is used, then the variables receive automatically assigned names.

The ASSUMEDSTRWIDTH subcommand specifies the maximum width of string variables
read from the file. If omitted, the default value is determined from the length of the string
in the first spreadsheet cell for each variable.

9.4.2 Postgres Database Queries

GET DATA /TYPE=PSQL
/CONNECT={connection info}
/SQL={query}
[/ASSUMEDSTRWIDTH=w]
[/UNENCRYPTED)]
[/BSIZE=n].

The PSQL type is used to import data from a postgres database server. The server may
be located locally or remotely. Variables are automatically created based on the table col-
umn names or the names specified in the SQL query. Postgres data types of high precision,
will loose precision when imported into PSPP. Not all the postgres data types are able to

http://gnumeric.org
http://libreplanet.org/wiki/Group:OpenDocument/Software

Chapter 9: System and Portable File I/0O 85

be represented in PsPP. If a datum cannot be represented a warning will be issued and that
datum will be set to SYSMIS.

The CONNECT subcommand is mandatory. It is a string specifying the parameters of the
database server from which the data should be fetched. The format of the string is given
in the postgres manual http://www.postgresql.org/docs/8.0/static/1libpq.html#
LIBPQ-CONNECT.

The SQL subcommand is mandatory. It must be a valid SQL string to retrieve data from
the database.

The ASSUMEDSTRWIDTH subcommand specifies the maximum width of string variables
read from the database. If omitted, the default value is determined from the length of the
string in the first value read for each variable.

The UNENCRYPTED subcommand allows data to be retrieved over an insecure connection.
If the connection is not encrypted, and the UNENCRYPTED subcommand is not given, then an
error will occur. Whether or not the connection is encrypted depends upon the underlying
psql library and the capabilities of the database server.

The BSIZE subcommand serves only to optimise the speed of data transfer. It specifies
an upper limit on number of cases to fetch from the database at once. The default value
is 4096. If your SQL statement fetches a large number of cases but only a small number of
variables, then the data transfer may be faster if you increase this value. Conversely, if the
number of variables is large, or if the machine on which PSPP is running has only a small
amount of memory, then a smaller value will be better.

The following syntax is an example:

GET DATA /TYPE=PSQL
/CONNECT="host=example.com port=5432 dbname=product user=fred passwd=xxxx’
/SQL="select * from manufacturer’.

9.4.3 Textual Data Files

GET DATA /TYPE=TXT
JFILE={"file_name’ file_handle}
[ENCODING="encoding’]
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first_case}|
[/IMPORTCASES=..]
.. .additional subcommands depending on ARRANGEMENT. ..

When TYPE=TXT is specified, GET DATA reads data in a delimited or fixed columnar
format, much like DATA LIST (see Section 8.5 [DATA LIST], page 66).

The FILE subcommand is mandatory. Specify the file to be read as a string file name or
(for textual data only) a file handle (see Section 6.9 [File Handles]|, page 44).

The ENCODING subcommand specifies the character encoding of the file to be read. See
Section 16.16 [INSERT], page 159, for information on supported encodings.

The ARRANGEMENT subcommand determines the file’s basic format. DELIMITED, the
default setting, specifies that fields in the input data are separated by spaces, tabs, or other
user-specified delimiters. FIXED specifies that fields in the input data appear at particular
fixed column positions within records of a case.

http://www.postgresql.org/docs/8.0/static/libpq.html#LIBPQ-CONNECT
http://www.postgresql.org/docs/8.0/static/libpq.html#LIBPQ-CONNECT

Chapter 9: System and Portable File I/O 86

By default, cases are read from the input file starting from the first line. To skip lines
at the beginning of an input file, set FIRSTCASE to the number of the first line to read: 2
to skip the first line, 3 to skip the first two lines, and so on.

IMPORTCASES is ignored, for compatibility. Use N OF CASES to limit the number of cases
read from a file (see Section 13.2 [N OF CASES], page 121), or SAMPLE to obtain a random
sample of cases (see Section 13.3 [SAMPLE], page 122).

The remaining subcommands apply only to one of the two file arrangements, described
below.

9.4.3.1 Reading Delimited Data

GET DATA /TYPE=TXT
JFILE={"file_name’ file_handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first_case}]
[/IMPORTCASE={ALL,FIRST max_cases,PERCENT percent}]

/DELIMITERS="delimiters"
[/QUALIFIER="quotes"
[/DELCASE={LINE,VARIABLES n_variables}|
/VARIABLES=del_varl [del_var2]. ..

where each del_var takes the form:
variable format

The GET DATA command with TYPE=TXT and ARRANGEMENT=DELIMITED
reads input data from text files in delimited format, where fields are separated by a set
of user-specified delimiters. Its capabilities are similar to those of DATA LIST FREE (see
Section 8.5.2 [DATA LIST FREE], page 69), with a few enhancements.

The required FILE subcommand and optional FIRSTCASE and IMPORTCASE subcommands
are described above (see Section 9.4.3 [GET DATA /TYPE=TXT], page 85).

DELIMITERS, which is required, specifies the set of characters that may separate fields.
Each character in the string specified on DELIMITERS separates one field from the next. The
end of a line also separates fields, regardless of DELIMITERS. Two consecutive delimiters in
the input yield an empty field, as does a delimiter at the end of a line. A space character
as a delimiter is an exception: consecutive spaces do not yield an empty field and neither
does any number of spaces at the end of a line.

To use a tab as a delimiter, specify ‘\t’ at the beginning of the DELIMITERS string. To
use a backslash as a delimiter, specify ‘\\’ as the first delimiter or, if a tab should also be
a delimiter, immediately following ‘\t’. To read a data file in which each field appears on
a separate line, specify the empty string for DELIMITERS.

The optional QUALIFIER subcommand names one or more characters that can be used
to quote values within fields in the input. A field that begins with one of the specified
quote characters ends at the next matching quote. Intervening delimiters become part of
the field, instead of terminating it. The ability to specify more than one quote character is
a PSPP extension.

Chapter 9: System and Portable File I/O 87

The character specified on QUALIFIER can be embedded within a field that it quotes by
doubling the qualifier. For example, if <’ is specified on QUALIFIER, then *a’’b’ specifies
a field that contains ‘a’b’.

The DELCASE subcommand controls how data may be broken across lines in the data
file. With LINE, the default setting, each line must contain all the data for exactly one
case. For additional flexibility, to allow a single case to be split among lines or multiple
cases to be contained on a single line, specify VARIABLES n_variables, where n_variables
is the number of variables per case.

The VARIABLES subcommand is required and must be the last subcommand. Specify the
name of each variable and its input format (see Section 6.7.4 [Input and Output Formats],
page 34) in the order they should be read from the input file.

Examples

On a Unix-like system, the ‘/etc/passwd’ file has a format similar to this:
root:1nyeSP5gD$pDq/:0:0:,,,:/root:/bin/bash
blp:1BrP/pFg4$g70G:1000:1000:Ben Pfaff,,,:/home/blp:/bin/bash
john:1JBuq/Fioq$g4A:1001:1001:John Darrington,,,:/home/john:/bin/bash
jhs:1D3114hPL$88X1:1002:1002: Jason Stover,,,:/home/jhs:/bin/csh

The following syntax reads a file in the format used by ‘/etc/passwd’:

GET DATA /TYPE=TXT /FILE=’/etc/passwd’ /DELIMITERS=’:’
/VARIABLES=username A20
password A40

uid F10

gid F10

gecos A40

home A40

shell A40.

Consider the following data on used cars:

model year mileage price type age
Civic 2002 29883 15900 Si 2
Civic 2003 13415 15900 EX 1
Civic 1992 107000 3800 n/a 12
Accord 2002 26613 17900 EX 1

The following syntax can be used to read the used car data:

GET DATA /TYPE=TXT /FILE=’cars.data’ /DELIMITERS=’ °’ /FIRSTCASE=2
/VARIABLES=model A8
year F4
mileage F6
price F5
type A4
age F2.

Consider the following information on animals in a pet store:

’Pet’’s Name’, "Age", "Color", "Date Received", "Price", "Height", "Type"
, (Years), , , (Dollars), ,

Chapter 9: System and Portable File I/O 88

"Rover", 4.5, Brown, "12 Feb 2004", 80, ’1’’4"’, "Dog"
"Charlie", , Gold, "5 Apr 2007", 12.3, "3""", "Fish"
"Molly", 2, Black, "12 Dec 2006", 25, ’5"’, "Cat"
"Gilly", , White, "10 Apr 2007", 10, "3""", "Guinea Pig"
The following syntax can be used to read the pet store data:
GET DATA /TYPE=TXT /FILE=’pets.data’ /DELIMITERS=’, ’ /QUALIFIER=’’’"’ /ESCAPE

/FIRSTCASE=3
/VARIABLES=name A10
age F3.1
color A5
received EDATE10
price F5.2
height ab
type all.

9.4.3.2 Reading Fixed Columnar Data

GET DATA /TYPE=TXT
JFILE={"file_name’,file_handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first_case}]
[/IMPORTCASE={ALL,FIRST max_cases, PERCENT percent}|

[/FIXCASE=n]
/VARIABLES fixed_var [fixed_var]. . .
[/rec# fixed_var [fixed_var]...]...
where each fixed_var takes the form:
variable start-end format

The GET DATA command with TYPE=TXT and ARRANGEMENT=FIXED reads input
data from text files in fixed format, where each field is located in particular fixed column
positions within records of a case. Its capabilities are similar to those of DATA LIST FIXED
(see Section 8.5.1 [DATA LIST FIXED], page 66), with a few enhancements.

The required FILE subcommand and optional FIRSTCASE and IMPORTCASE subcommands
are described above (see Section 9.4.3 [GET DATA /TYPE=TXT], page 85).

The optional FIXCASE subcommand may be used to specify the positive integer number
of input lines that make up each case. The default value is 1.

The VARIABLES subcommand, which is required, specifies the positions at which each
variable can be found. For each variable, specify its name, followed by its start and end
column separated by ‘=’ (e.g. ‘0-9’), followed by an input format type (e.g. ‘F’) or a full
format specification (e.g. ‘DOLLAR12.2’). For this command, columns are numbered starting
from 0 at the left column. Introduce the variables in the second and later lines of a case by
a slash followed by the number of the line within the case, e.g. ‘//2’ for the second line.

Examples
Consider the following data on used cars:

model year mileage price type age

Chapter 9: System and Portable File I/O 89

Civic 2002 29883 15900 Si 2
Civic 2003 13415 15900 EX 1
Civic 1992 107000 3800 n/a 12
Accord 2002 26613 17900 EX 1

The following syntax can be used to read the used car data:

GET DATA /TYPE=TXT /FILE=’cars.data’ /ARRANGEMENT=FIXED /FIRSTCASE=2
/VARIABLES=model 0-7 A
year 8-15 F
mileage 16-23 F
price 24-31 F
type 32-40 A
age 40-47 F.

9.5 IMPORT

IMPORT
J/FILE="file_name’
/TYPE={COMM,TAPE}
/DROP=var_list
JKEEP=var_list
/RENAME=(src_.names=target_names). . .

The IMPORT transformation clears the active dataset dictionary and data and replaces
them with a dictionary and data from a system file or portable file.

The FILE subcommand, which is the only required subcommand, specifies the portable
file to be read as a file name string or a file handle (see Section 6.9 [File Handles|, page 44).

The TYPE subcommand is currently not used.
DROP, KEEP, and RENAME follow the syntax used by GET (see Section 9.3 [GET], page 82).

IMPORT does not cause the data to be read; only the dictionary. The data is read later,
when a procedure is executed.

Use of IMPORT to read a system file is a PSPP extension.

9.6 SAVE

SAVE
JOUTFILE={"file_name’ file_handle}
JUNSELECTED={RETAIN,DELETE}
/{UNCOMPRESSED,COMPRESSED,ZCOMPRESSED}
/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var_Iist
JKEEP=var_list
/VERSION=version
/RENAME=(src_names=target_names). . .
/NAMES
/MAP

The SAVE procedure causes the dictionary and data in the active dataset to be written
to a system file.

Chapter 9: System and Portable File I/0O 90

OUTFILE is the only required subcommand. Specify the system file to be written as a
string file name or a file handle (see Section 6.9 [File Handles], page 44).

By default, cases excluded with FILTER are written to the system file. These can be
excluded by specifying DELETE on the UNSELECTED subcommand. Specifying RETAIN makes
the default explicit.

The UNCOMPRESSED, COMPRESSED, and ZCOMPRESSED subcommand determine the system
file’s compression level:

UNCOMPRESSED
Data is not compressed. Each numeric value uses 8 bytes of disk space. Each
string value uses one byte per column width, rounded up to a multiple of 8
bytes.

COMPRESSED
Data is compressed with a simple algorithm. Each integer numeric value be-
tween —99 and 151, inclusive, or system missing value uses one byte of disk
space. Each 8-byte segment of a string that consists only of spaces uses 1 byte.
Any other numeric value or 8-byte string segment uses 9 bytes of disk space.

ZCOMPRESSED
Data is compressed with the “deflate” compression algorithm specified in
RFC 1951 (the same algorithm used by gzip). Files written with this
compression level cannot be read by PSPP 0.8.1 or earlier or by SPSS 20 or
earlier.

COMPRESSED is the default compression level. The SET command (see Section 16.20
[SET], page 161) can change this default.

The PERMISSIONS subcommand specifies permissions for the new system file. WRITE-
ABLE, the default, creates the file with read and write permission. READONLY creates
the file for read-only access.

By default, all the variables in the active dataset dictionary are written to the system
file. The DROP subcommand can be used to specify a list of variables not to be written. In
contrast, KEEP specifies variables to be written, with all variables not specified not written.

Normally variables are saved to a system file under the same names they have in the
active dataset. Use the RENAME subcommand to change these names. Specify, within paren-
theses, a list of variable names followed by an equals sign (‘=’) and the names that they
should be renamed to. Multiple parenthesized groups of variable names can be included on
a single RENAME subcommand. Variables’ names may be swapped using a RENAME subcom-
mand of the form /RENAME=(A B=B A).

Alternate syntax for the RENAME subcommand allows the parentheses to be eliminated.
When this is done, only a single variable may be renamed at once. For instance,
/RENAME=A=B. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are performed in left-to-right order. They each may be present
any number of times. SAVE never modifies the active dataset. DROP, KEEP, and RENAME only
affect the system file written to disk.

The VERSION subcommand specifies the version of the file format. Valid versions are 2
and 3. The default version is 3. In version 2 system files, variable names longer than 8
bytes will be truncated. The two versions are otherwise identical.

Chapter 9: System and Portable File I/O 91

The NAMES and MAP subcommands are currently ignored.

SAVE causes the data to be read. It is a procedure.

9.7 SAVE TRANSLATE

SAVE TRANSLATE
JOUTFILE={"file_name’ file_handle}
JTYPE={CSV,TAB}

[/REPLACE]
[/MISSING={IGNORE,RECODE}]

[/DROP=var_list]

[/ KEEP=var_list]
[/RENAME=(src_names=target_names). . .]
[/UNSELECTED={RETAIN,DELETE}
[/MAP]

.. .additional subcommands depending on TYPE. ..

The SAVE TRANSLATE command is used to save data into various formats understood by
other applications.

The OUTFILE and TYPE subcommands are mandatory. OUTFILE specifies the file to be
written, as a string file name or a file handle (see Section 6.9 [File Handles|, page 44). TYPE
determines the type of the file or source to read. It must be one of the following;:

CSV Comma-separated value format,

TAB Tab-delimited format.

By default, SAVE TRANSLATE will not overwrite an existing file. Use REPLACE to force an
existing file to be overwritten.

With MISSING=IGNORE, the default, SAVE TRANSLATE treats user-missing values as if
they were not missing. Specify MISSING=RECODE to output numeric user-missing values
like system-missing values and string user-missing values as all spaces.

By default, all the variables in the active dataset dictionary are saved to the system file,
but DROP or KEEP can select a subset of variable to save. The RENAME subcommand can
also be used to change the names under which variables are saved. UNSELECTED determines
whether cases filtered out by the FILTER command are written to the output file. These
subcommands have the same syntax and meaning as on the SAVE command (see Section 9.6
[SAVE], page 89).

Each supported file type has additional subcommands, explained in separate sections
below.

SAVE TRANSLATE causes the data to be read. It is a procedure.

9.7.1 Writing Comma- and Tab-Separated Data Files

SAVE TRANSLATE
JOUTFILE={"file_name’ file_handle}
JTYPE=CSV

Chapter 9: System and Portable File I/O 92

[/REPLACE]
[/MISSING={IGNORE,RECODE}]

[/DROP=var_list]

[/KEEP=var_list]
[/RENAME=(src_names=target_names). . .]
[/UNSELECTED={RETAIN,DELETE}|

[/FIELDNAMES]

[/CELLS={VALUES,LABELS}]

[/TEXTOPTIONS DELIMITER="delimiter’]
[/TEXTOPTIONS QUALIFIER="qualifier’]
[/TEXTOPTIONS DECIMAL={DOT,COMMA}|
[/JTEXTOPTIONS FORMAT={PLAIN,VARIABLE}]

The SAVE TRANSLATE command with TYPE=CSV or TYPE=TAB writes data in a
comma- or tab-separated value format similar to that described by RFC 4180. Each variable
becomes one output column, and each case becomes one line of output. If FIELDNAMES
is specified, an additional line at the top of the output file lists variable names.

The CELLS and TEXTOPTIONS FORMAT settings determine how values are written
to the output file:

CELLS=VALUES FORMAT=PLAIN (the default settings)

Writes variables to the output in “plain” formats that ignore the details of
variable formats. Numeric values are written as plain decimal numbers with
enough digits to indicate their exact values in machine representation. Numeric
values include ‘e’ followed by an exponent if the exponent value would be less
than -4 or greater than 16. Dates are written in MM/DD/YYYY format and
times in HH:MM:SS format. WKDAY and MONTH values are written as
decimal numbers.

Numeric values use, by default, the decimal point character set with SET
DECIMAL (see [SET DECIMALJ, page 163). Use DECIMAL=DOT or DEC-
IMAL=COMMA to force a particular decimal point character.

CELLS=VALUES FORMAT=VARIABLE
Writes variables using their print formats. Leading and trailing spaces are re-
moved from numeric values, and trailing spaces are removed from string values.

CELLS=LABEL FORMAT=PLAIN

CELLS=LABEL FORMAT=VARIABLE
Writes value labels where they exist, and otherwise writes the values themselves
as described above.

Regardless of CELLS and TEXTOPTIONS FORMAT, numeric system-missing values
are output as a single space.

For TYPE=TAB, tab characters delimit values. For TYPE=CSV, the TEXTOPTIONS
DELIMITER and DECIMAL settings determine the character that separate values within a
line. If DELIMITER is specified, then the specified string separate values. If DELIMITER
is not specified, then the default is a comma with DECIMAL=DOT or a semicolon with

Chapter 9: System and Portable File I/O 93

DECIMAL=COMMA. If DECIMAL is not given either, it is implied by the decimal point
character set with SET DECIMAL (see [SET DECIMALJ, page 163).

The TEXTOPTIONS QUALIFIER setting specifies a character that is output before
and after a value that contains the delimiter character or the qualifier character. The
default is a double quote (‘"’). A qualifier character that appears within a value is doubled.

9.8 SYSFILE INFO

SYSFILE INFO FILE='file_.name’ [ENCODING=’encoding’].

SYSFILE INFO reads the dictionary in an SPSS system file, SPSS/PC+ system file, or
SPSS portable file, and displays the information in its dictionary.

Specify a file name or file handle. SYSFILE INFO reads that file and displays information
on its dictionary.

PSPP automatically detects the encoding of string data in the file, when possible.
The character encoding of old SPSS system files cannot always be guessed correctly,
and SPSS/PC+ system files do not include any indication of their encoding. Specify
the ENCODING subcommand with an TANA character set name as its string argument to
override the default, or specify ENCODING=’DETECT’ to analyze and report possibly valid
encodings for the system file. The ENCODING subcommand is a PSPP extension.

SYSFILE INFO does not affect the current active dataset.

9.9 XEXPORT

XEXPORT
/OUTFILE="file_name’
/DIGITS=n
/DROP=var_list
JKEEP=var_list
/RENAME=(src_.names=target_names). . .
JTYPE={COMM,TAPE}
/MAP

The EXPORT transformation writes the active dataset dictionary and data to a specified
portable file.

This transformation is a PSPP extension.
It is similar to the EXPORT procedure, with two differences:

e XEXPORT is a transformation, not a procedure. It is executed when the data is read by
a procedure or procedure-like command.

e XEXPORT does not support the UNSELECTED subcommand.

See Section 9.2 [EXPORT], page 82, for more information.

9.10 XSAVE

XSAVE
/OUTFILE="file_name’
/{UNCOMPRESSED,COMPRESSED,ZCOMPRESSED }

Chapter 9: System and Portable File I/O 94

/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var_list

JKEEP=var_list

/VERSION=version
/RENAME=(src_.names=target_names). . .
/NAMES

/MAP

The XSAVE transformation writes the active dataset’s dictionary and data to a system
file. It is similar to the SAVE procedure, with two differences:

e XSAVE is a transformation, not a procedure. It is executed when the data is read by a
procedure or procedure-like command.

e XSAVE does not support the UNSELECTED subcommand.
See Section 9.6 [SAVE], page 89, for more information.

Chapter 10: Combining Data Files 95

10 Combining Data Files

This chapter describes commands that allow data from system files, portable files, and open
datasets to be combined to form a new active dataset. These commands can combine data
files in the following ways:

e ADD FILES interleaves or appends the cases from each input file. It is used with input
files that have variables in common, but distinct sets of cases.

e MATCH FILES adds the data together in cases that match across multiple input files.
It is used with input files that have cases in common, but different information about
each case.

e UPDATE updates a master data file from data in a set of transaction files. Each case in
a transaction data file modifies a matching case in the primary data file, or it adds a
new case if no matching case can be found.

These commands share the majority of their syntax, which is described in the following
section, followed by one section for each command that describes its specific syntax and
semantics.

10.1 Common Syntax

Per input file:
JFILE={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]

[/SORT]

Once per command:
/BY var_list[({D1A})] [var_list[({DIA}]]. ..
[/DROP=var_list]
[/ KEEP=var_list]
[/FIRST=var_name|
[/LAST=var_name]
[/MAP)

This section describes the syntactical features in common among the ADD FILES, MATCH
FILES, and UPDATE commands. The following sections describe details specific to each
command.

Each of these commands reads two or more input files and combines them. The com-
mand’s output becomes the new active dataset. None of the commands actually change the
input files. Therefore, if you want the changes to become permanent, you must explicitly
save them using an appropriate procedure or transformation (see Chapter 9 [System and
Portable File I0], page 81).

The syntax of each command begins with a specification of the files to be read as input.
For each input file, specify FILE with a system file or portable file’s name as a string,
a dataset (see Section 6.7 [Datasets|, page 32) or file handle name, (see Section 6.9 [File
Handles|, page 44), or an asterisk (‘*’) to use the active dataset as input. Use of portable
files on FILE is a PSPP extension.

Chapter 10: Combining Data Files 96

At least two FILE subcommands must be specified. If the active dataset is used as an
input source, then TEMPORARY must not be in effect.

Each FILE subcommand may be followed by any number of RENAME subcommands
that specify a parenthesized group or groups of variable names as they appear in the
input file, followed by those variables’ new names, separated by an equals sign (=), e.g.
/RENAME=(0LD1=NEW1) (OLD2=NEW2). To rename a single variable, the parentheses may be
omitted: /RENAME=old=new. Within a parenthesized group, variables are renamed simulta-
neously, so that /RENAME=(A B=B A) exchanges the names of variables A and B. Otherwise,
renaming occurs in left-to-right order.

Each FILE subcommand may optionally be followed by a single IN subcommand, which
creates a numeric variable with the specified name and format F1.0. The IN variable takes
value 1 in an output case if the given input file contributed to that output case, and 0
otherwise. The DROP, KEEP, and RENAME subcommands have no effect on IN variables.

If BY is used (see below), the SORT keyword must be specified after a FILE if that input
file is not already sorted on the BY variables. When SORT is specified, PSPP sorts the input
file’s data on the BY variables before it applies it to the command. When SORT is used, BY
is required. SORT is a PSPP extension.

PSPP merges the dictionaries of all of the input files to form the dictionary of the new
active dataset, like so:

e The variables in the new active dataset are the union of all the input files’ variables,
matched based on their name. When a single input file contains a variable with a given
name, the output file will contain exactly that variable. When more than one input
file contains a variable with a given name, those variables must all have the same type
(numeric or string) and, for string variables, the same width. Variables are matched
after renaming with the RENAME subcommand. Thus, RENAME can be used to resolve
conflicts.

e The variable label for each output variable is taken from the first specified input file
that has a variable label for that variable, and similarly for value labels and missing
values.

o The file label of the new active dataset (see Section 16.12 [FILE LABEL]|, page 159) is
that of the first specified FILE that has a file label.

e The documents in the new active dataset (see Section 16.5 [DOCUMENT], page 157)
are the concatenation of all the input files’” documents, in the order in which the FILE
subcommands are specified.

e If all of the input files are weighted on the same variable, then the new active dataset
is weighted on that variable. Otherwise, the new active dataset is not weighted.

The remaining subcommands apply to the output file as a whole, rather than to individ-
ual input files. They must be specified at the end of the command specification, following
all of the FILE and related subcommands. The most important of these subcommands is
BY, which specifies a set of one or more variables that may be used to find corresponding
cases in each of the input files. The variables specified on BY must be present in all of the
input files. Furthermore, if any of the input files are not sorted on the BY variables, then
SORT must be specified for those input files.

Chapter 10: Combining Data Files 97

The variables listed on BY may include (A) or (D) annotations to specify ascending or
descending sort order. See Section 12.8 [SORT CASES], page 120, for more details on this
notation. Adding (A) or (D) to the BY subcommand specification is a PSPP extension.

The DROP subcommand can be used to specify a list of variables to exclude from the
output. By contrast, the KEEP subcommand can be used to specify variables to include in
the output; all variables not listed are dropped. DROP and KEEP are executed in left-to-right
order and may be repeated any number of times. DROP and KEEP do not affect variables
created by the IN, FIRST, and LAST subcommands, which are always included in the new
active dataset, but they can be used to drop BY variables.

The FIRST and LAST subcommands are optional. They may only be specified on MATCH
FILES and ADD FILES, and only when BY is used. FIRST and LIST each adds a numeric
variable to the new active dataset, with the name given as the subcommand’s argument
and F1.0 print and write formats. The value of the FIRST variable is 1 in the first output
case with a given set of values for the BY variables, and 0 in other cases. Similarly, the LAST
variable is 1 in the last case with a given of BY values, and 0 in other cases.

When any of these commands creates an output case, variables that are only in files
that are not present for the current case are set to the system-missing value for numeric
variables or spaces for string variables.

These commands may combine any number of files, limited only by the machine’s mem-
ory.

10.2 ADD FILES
ADD FILES

Per input file:
JFILE={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]
[/SORT]

Once per command:
[/BY var_list[({DIA})] [var_list[({DIA})]. . .]]
[/DROP=var_list]
[/ KEEP=var_list]
[/FIRST=var_name]
[/LAST=var_name]
[/MAP)

ADD FILES adds cases from multiple input files. The output, which replaces the active
dataset, consists all of the cases in all of the input files.

ADD FILES shares the bulk of its syntax with other PSPP commands for combining mul-
tiple data files. See Section 10.1 [Combining Files Common Syntax], page 95, above, for an
explanation of this common syntax.

When BY is not used, the output of ADD FILES consists of all the cases from the first
input file specified, followed by all the cases from the second file specified, and so on. When
BY is used, the output is additionally sorted on the BY variables.

Chapter 10: Combining Data Files 98

When ADD FILES creates an output case, variables that are not part of the input file
from which the case was drawn are set to the system-missing value for numeric variables or
spaces for string variables.

10.3 MATCH FILES
MATCH FILES

Per input file:
J{FILE,TABLE}={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]
[/SORT]

Once per command:
/BY var_list[({D|A}] [var_list[({DIA})]. . .]
[/DROP=var_list]
[/ KEEP=var_list]
[/FIRST=var_name]
[/LAST=var_name]
[/MAP]

MATCH FILES merges sets of corresponding cases in multiple input files into single cases
in the output, combining their data.

MATCH FILES shares the bulk of its syntax with other PSPP commands for combining
multiple data files. See Section 10.1 [Combining Files Common Syntax], page 95, above,
for an explanation of this common syntax.

How MATCH FILES matches up cases from the input files depends on whether BY is spec-
ified:

e If BY is not used, MATCH FILES combines the first case from each input file to produce
the first output case, then the second case from each input file for the second output
case, and so on. If some input files have fewer cases than others, then the shorter files
do not contribute to cases output after their input has been exhausted.

e [fBY is used, MATCH FILES combines cases from each input file that have identical values
for the BY variables.

When BY is used, TABLE subcommands may be used to introduce table lookup file.
TABLE has same syntax as FILE, and the RENAME, IN, and SORT subcommands may
follow a TABLE in the same way as FILE. Regardless of the number of TABLESs, at least
one FILE must specified. Table lookup files are treated in the same way as other input
files for most purposes and, in particular, table lookup files must be sorted on the BY
variables or the SORT subcommand must be specified for that TABLE.

Cases in table lookup files are not consumed after they have been used once. This
means that data in table lookup files can correspond to any number of cases in FILE
input files. Table lookup files are analogous to lookup tables in traditional relational
database systems.

If a table lookup file contains more than one case with a given set of BY variables, only
the first case is used.

Chapter 10: Combining Data Files 99

When MATCH FILES creates an output case, variables that are only in files that are not
present for the current case are set to the system-missing value for numeric variables or
spaces for string variables.

10.4 UPDATE
UPDATE

Per input file:
JFILE={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]

[/SORT]

Once per command:
/BY var_list[({DIA})] [var_list[({DIA})]]. ..
[/DROP=var_list]
[/ KEEP=var_list]
[/MAP]

UPDATE updates a master file by applying modifications from one or more transaction
files.

UPDATE shares the bulk of its syntax with other PSPP commands for combining multiple
data files. See Section 10.1 [Combining Files Common Syntax|, page 95, above, for an
explanation of this common syntax.

At least two FILE subcommands must be specified. The first FILE subcommand names
the master file, and the rest name transaction files. Every input file must either be sorted
on the variables named on the BY subcommand, or the SORT subcommand must be used
just after the FILE subcommand for that input file.

UPDATE uses the variables specified on the BY subcommand, which is required, to attempt
to match each case in a transaction file with a case in the master file:

e When a match is found, then the values of the variables present in the transaction file
replace those variables’ values in the new active file. If there are matching cases in more
than more transaction file, PSPP applies the replacements from the first transaction file,
then from the second transaction file, and so on. Similarly, if a single transaction file
has cases with duplicate BY values, then those are applied in order to the master file.

When a variable in a transaction file has a missing value or when a string variable’s
value is all blanks, that value is never used to update the master file.

e If a case in the master file has no matching case in any transaction file, then it is copied
unchanged to the output.

e If a case in a transaction file has no matching case in the master file, then it causes a
new case to be added to the output, initialized from the values in the transaction file.

Chapter 11: Manipulating variables 100

11 Manipulating variables

The variables in the active dataset dictionary are important. There are several utility
functions for examining and adjusting them.

11.1 ADD VALUE LABELS

ADD VALUE LABELS
/var_list value ’label’ [value ’label’]. . .

ADD VALUE LABELS has the same syntax and purpose as VALUE LABELS (see Section 11.13
[VALUE LABELS], page 106), but it does not clear value labels from the variables before
adding the ones specified.

11.2 DELETE VARIABLES

DELETE VARIABLES var_list.

DELETE VARIABLES deletes the specified variables from the dictionary. It may not be
used to delete all variables from the dictionary; use NEW FILE to do that (see Section 8.11
[NEW FILE], page 76).

DELETE VARIABLES should not be used after defining transformations but before execut-
ing a procedure. If it is used in such a context, it causes the data to be read. If it is used
while TEMPORARY is in effect, it causes the temporary transformations to become permanent.

11.3 DISPLAY

DISPLAY [SORTED] NAMES [[/VARIABLES=]var_list].
DISPLAY [SORTED] INDEX [[/VARIABLES=]var_list].
DISPLAY [SORTED] LABELS [[/VARIABLES=]var_list].
DISPLAY [SORTED] VARIABLES [[/VARIABLES=]var_list].
DISPLAY [SORTED] DICTIONARY [[/VARIABLES=]var_list].
DISPLAY [SORTED] SCRATCH [[/VARIABLES=]var_list].
DISPLAY [SORTED] ATTRIBUTES [[/VARIABLES=]var_list].
DISPLAY [SORTED] @ATTRIBUTES [[/VARIABLES=]var_list].
DISPLAY [SORTED] VECTORS.

DISPLAY displays information about the active dataset. A variety of different forms of
information can be requested.

The following keywords primarily cause information about variables to be displayed.
With these keywords, by default information is displayed about all variable in the active
dataset, in the order that variables occur in the active dataset dictionary. The SORTED
keyword causes output to be sorted alphabetically by variable name. The VARIABLES sub-
command limits output to the specified variables.

NAMES The variables’ names are displayed.

INDEX The variables’ names are displayed along with a value describing their position
within the active dataset dictionary.

LABELS Variable names, positions, and variable labels are displayed.

Chapter 11: Manipulating variables 101

VARIABLES
Variable names, positions, print and write formats, and missing values are dis-
played.

DICTIONARY
Variable names, positions, print and write formats, missing values, variable
labels, and value labels are displayed.

SCRATCH
Variable names are displayed, for scratch variables only (see Section 6.7.5
[Scratch Variables|, page 43).

ATTRIBUTES

@ATTRIBUTES

Datafile and variable attributes are displayed. The first form of the command
omits those attributes whose names begin with @ or $@. In the second for, all
datafile and variable attributes are displayed.

With the VECTOR keyword, DISPLAY lists all the currently declared vectors. If the SORTED
keyword is given, the vectors are listed in alphabetical order; otherwise, they are listed in
textual order of definition within the PSPP syntax file.

For related commands, see Section 16.6 [DISPLAY DOCUMENTS], page 158 and
Section 16.7 [DISPLAY FILE LABEL], page 158.

11.4 FORMATS

FORMATS var_list (fmt_spec) [var_list (fmt_spec)]. . ..

FORMATS set both print and write formats for the specified variables to the specified
format specification. See Section 6.7.4 [Input and Output Formats|, page 34.

Specify a list of variables followed by a format specification in parentheses. The print
and write formats of the specified variables will be changed. All of the variables listed
together must have the same type and, for string variables, the same width.

Additional lists of variables and formats may be included following the first one.

FORMATS takes effect immediately. It is not affected by conditional and looping structures
such as DO IF or LOOP.

11.5 LEAVE
LEAVE var_list.

LEAVE prevents the specified variables from being reinitialized whenever a new case is
processed.

Normally, when a data file is processed, every variable in the active dataset is initialized
to the system-missing value or spaces at the beginning of processing for each case. When a
variable has been specified on LEAVE, this is not the case. Instead, that variable is initialized
to 0 (not system-missing) or spaces for the first case. After that, it retains its value between
cases.

This becomes useful for counters. For instance, in the example below the variable SUM
maintains a running total of the values in the ITEM variable.

Chapter 11: Manipulating variables 102

DATA LIST /ITEM 1-3.
COMPUTE SUM=SUM+ITEM.
PRINT /ITEM SUM.
LEAVE SUM

BEGIN DATA.

123

404

555

999

END DATA.

Partial output from this example:

123 123.00
404 527.00
5565 1082.00
999 2081.00

It is best to use LEAVE command immediately before invoking a procedure command,
because the left status of variables is reset by certain transformations—for instance, COMPUTE
and IF. Left status is also reset by all procedure invocations.

11.6 MISSING VALUES
MISSING VALUES var_list (missing_values).

where missing_values takes one of the following forms:
numl
numl, num?2
numl, num?2, num3
numl THRU num?2
numl THRU num2, num3
stringl
stringl, string2
stringl, string?2, string3
As part of a range, LO
or LOWEST
may take the place of numl;
HI
or HIGHEST
may take the place of num2.

MISSING VALUES sets user-missing values for numeric and string variables. Long string
variables may have missing values, but characters after the first 8 bytes of the missing value
must be spaces.

Specify a list of variables, followed by a list of their user-missing values in parentheses.
Up to three discrete values may be given, or, for numeric variables only, a range of values
optionally accompanied by a single discrete value. Ranges may be open-ended on one end,
indicated through the use of the keyword LO or LOWEST or HI or HIGHEST.

Chapter 11: Manipulating variables 103

The MISSING VALUES command takes effect immediately. It is not affected by conditional
and looping constructs such as DO IF or LOOP.

11.7 MODIFY VARS

MODIFY VARS
/REORDER={FORWARD,BACKWARD} {POSITIONAL,ALPHA} (var_list). . .
/RENAME=(o0ld_names=new_names). . .
/{DROP,KEEP}=var_list
/MAP

MODIFY VARS reorders, renames, and deletes variables in the active dataset.

At least one subcommand must be specified, and no subcommand may be specified more
than once. DROP and KEEP may not both be specified.

The REORDER subcommand changes the order of variables in the active dataset. Specify
one or more lists of variable names in parentheses. By default, each list of variables is
rearranged into the specified order. To put the variables into the reverse of the specified
order, put keyword BACKWARD before the parentheses. To put them into alphabetical order
in the dictionary, specify keyword ALPHA before the parentheses. BACKWARD and ALPHA may
also be combined.

To rename variables in the active dataset, specify RENAME, an equals sign (‘=’), and lists
of the old variable names and new variable names separated by another equals sign within
parentheses. There must be the same number of old and new variable names. Each old
variable is renamed to the corresponding new variable name. Multiple parenthesized groups
of variables may be specified.

The DROP subcommand deletes a specified list of variables from the active dataset.

The KEEP subcommand keeps the specified list of variables in the active dataset. Any
unlisted variables are deleted from the active dataset.

MAP is currently ignored.
If either DROP or KEEP is specified, the data is read; otherwise it is not.

MODIFY VARS may not be specified following TEMPORARY (see Section 13.6 [TEMPO-
RARY], page 123).

11.8 MRSETS
MRSETS
/MDGROUP NAME=name VARIABLES=var_list VALUE=value
[CATEGORYLABELS={VARLABELS,COUNTEDVALUES}|
[{LABEL=’label’, LABELSOURCE=VARLABEL}|
/MCGROUP NAME=name VARIABLES=var_list [LABEL="label’|
/DELETE NAME={[names|,ALL}

/DISPLAY NAME={[names|,ALL}

Chapter 11: Manipulating variables 104

MRSETS creates, modifies, deletes, and displays multiple response sets. A multiple re-
sponse set is a set of variables that represent multiple responses to a single survey question
in one of the two following ways:

e A multiple dichotomy set is analogous to a survey question with a set of checkboxes.
Each variable in the set is treated in a Boolean fashion: one value (the "counted value")
means that the box was checked, and any other value means that it was not.

e A multiple category set represents a survey question where the respondent is instructed
to list up to n choices. Each variable represents one of the responses.

Any number of subcommands may be specified in any order.

The MDGROUP subcommand creates a new multiple dichotomy set or replaces an existing
multiple response set. The NAME, VARIABLES, and VALUE specifications are required. The
others are optional:

e NAME specifies the name used in syntax for the new multiple dichotomy set. The name
must begin with ‘$’; it must otherwise follow the rules for identifiers (see Section 6.1
[Tokens|, page 28).

e VARIABLES specifies the variables that belong to the set. At least two variables must
be specified. The variables must be all string or all numeric.

e VALUE specifies the counted value. If the variables are numeric, the value must be an
integer. If the variables are strings, then the value must be a string that is no longer
than the shortest of the variables in the set (ignoring trailing spaces).

e CATEGORYLABELS optionally specifies the source of the labels for each category in the
set:

— VARLABELS, the default, uses variable labels or, for variables without variable labels,
variable names. PSPP warns if two variables have the same variable label, since
these categories cannot be distinguished in output.

— COUNTEDVALUES instead uses each variable’s value label for the counted value. PSPP
warns if two variables have the same value label for the counted value or if one of
the variables lacks a value label, since such categories cannot be distinguished in
output.

e LABEL optionally specifies a label for the multiple response set. If neither LABEL nor
LABELSOURCE=VARLABEL is specified, the set is unlabeled.

e LABELSOURCE=VARLABEL draws the multiple response set’s label from the first
variable label among the variables in the set; if none of the variables has a label,
the name of the first variable is used. LABELSOURCE=VARLABEL must be used with
CATEGORYLABELS=COUNTEDVALUES. It is mutually exclusive with LABEL.

The MCGROUP subcommand creates a new multiple category set or replaces an existing
multiple response set. The NAME and VARIABLES specifications are required, and LABEL is
optional. Their meanings are as described above in MDGROUP. PSPP warns if two variables
in the set have different value labels for a single value, since each of the variables in the set
should have the same possible categories.

The DELETE subcommand deletes multiple response groups. A list of groups may be
named within a set of required square brackets, or ALL may be used to delete all groups.

The DISPLAY subcommand displays information about defined multiple response sets.
Its syntax is the same as the DELETE subcommand.

Chapter 11: Manipulating variables 105

Multiple response sets are saved to and read from system files by, e.g., the SAVE and
GET command. Otherwise, multiple response sets are currently used only by third party
software.

11.9 NUMERIC

NUMERIC /var_list [(fmt_spec)].
NUMERIC explicitly declares new numeric variables, optionally setting their output for-
mats.
Specify a slash (‘/’), followed by the names of the new numeric variables. If you wish to
set their output formats, follow their names by an output format specification in parentheses
(see Section 6.7.4 [Input and Output Formats|, page 34); otherwise, the default is F8.2.

Variables created with NUMERIC are initialized to the system-missing value.

11.10 PRINT FORMATS

PRINT FORMATS var_list (fmt_spec) [var_list (fmt_spec)]. . ..
PRINT FORMATS sets the print formats for the specified variables to the specified format
specification.
Its syntax is identical to that of FORMATS (see Section 11.4 [FORMATS], page 101), but
PRINT FORMATS sets only print formats, not write formats.

11.11 RENAME VARIABLES

RENAME VARIABLES (old_names=new_names). . . .

RENAME VARIABLES changes the names of variables in the active dataset. Specify lists of
the old variable names and new variable names, separated by an equals sign (‘=’), within
parentheses. There must be the same number of old and new variable names. Each old
variable is renamed to the corresponding new variable name. Multiple parenthesized groups
of variables may be specified. When the old and new variable names contain only a single
variable name, the parentheses are optional.

RENAME VARIABLES takes effect immediately. It does not cause the data to be read.

RENAME VARIABLES may not be specified following TEMPORARY (see Section 13.6 [TEM-
PORARY], page 123).

11.12 SORT VARIABLES

SORT VARIABLES [BY]
(NAME | TYPE | FORMAT | LABEL | VALUES | MISSING | MEASURE
| ROLE | COLUMNS | ALIGNMENT | ATTRIBUTE name)
[(D)]-
SORT VARIABLES reorders the variables in the active dataset. The main specification is
one of the following identifiers, which determines how the variables are sorted:

NAME Sorts the variables according to their names, in a case-insensitive fashion. How-
ever, when variable names differ only in a number at the end, they are sorted
numerically. For example, VAR5 is sorted before VAR400 even though ‘4’ pre-
cedes ‘5.

Chapter 11: Manipulating variables 106

TYPE Sorts numeric variables before string variables, and shorter string variables
before longer ones.

FORMAT Groups variables by print format; within a format, sorts narrower formats before
wider ones; with the same format and width, sorts fewer decimal places before
more decimal places. See Section 11.4 [FORMATS], page 101.

LABEL Sorts variables without a variable label before those with one. See Section 11.16
[VARIABLE LABELS], page 108.

VALUES Sorts variables without value labels before those with some. See Section 11.13
[VALUE LABELS], page 106.

MISSING Sorts variables without missing values before those with some. See Section 11.6
[MISSING VALUES], page 102.

MEASURE
Sorts nominal variables first, followed by ordinal variables, followed by scale
variables. See Section 11.19 [VARIABLE LEVEL], page 109.

ROLE Groups variables according to their role. See Section 11.20 [VARIABLE ROLE],
page 109.

COLUMNS
Sorts variables in ascending display width. See Section 11.18 [VARIABLE
WIDTH], page 109.

ALIGNMENT
Sorts variables according to their alignment, first left-aligned, then
right-aligned, then centered. See Section 11.17 [VARIABLE ALIGNMENT],
page 108.

ATTRIBUTE name
Sorts variables according to the first value of their name attribute. Vari-
ables without attribute are sorted first. See Section 11.15 [VARIABLE AT-
TRIBUTE], page 107.

Only one sort criterion can be specified. The sort is “stable,” so to sort on multiple
criteria one may perform multiple sorts. For example, the following will sort primarily
based on alignment, with variables that have the same alignment ordered based on display
width:

SORT VARIABLES BY COLUMNS.
SORT VARIABLES BY ALIGNMENT.

Specify (D) to reverse the sort order.

11.13 VALUE LABELS

VALUE LABELS
/var_list value ’label’ [value ’label’]. . .

VALUE LABELS allows values of variables to be associated with labels. In this way, a short
value can stand for a longer, more descriptive label.

Chapter 11: Manipulating variables 107

Both numeric and string variables can be given labels. For string variables, the values
are case-sensitive, so that, for example, a capitalized value and its lowercase variant would
have to be labeled separately if both are present in the data.

To set up value labels for one or more variables, specify the variable names after a slash
(‘77), followed by a list of values and their associated labels, separated by spaces.

Value labels in output are normally broken into lines automatically. Put ‘\n’ in a label
string to force a line break at that point. The label may still be broken into lines at
additional points.

Before VALUE LABELS is executed, any existing value labels are cleared from the variables

specified. Use ADD VALUE LABELS (see Section 11.1 [ADD VALUE LABELS], page 100) to
add value labels without clearing those already present.

11.14 STRING
STRING var_list (fmt_spec) [/var_list (fmt_spec)] [. . .].

STRING creates new string variables for use in transformations.

Specify a list of names for the variable you want to create, followed by the desired
output format specification in parentheses (see Section 6.7.4 [Input and Output Formats],
page 34). Variable widths are implicitly derived from the specified output formats. The
created variables will be initialized to spaces.

If you want to create several variables with distinct output formats, you can either use
two or more separate STRING commands, or you can specify further variable list and format
specification pairs, each separated from the previous by a slash (‘/7).

The following example is one way to create three string variables; Two of the variables
have format A24 and the other AS8O:

STRING firstname lastname (A24) / address (A80).
Here is another way to achieve the same result:

STRING firstname lastname (A24).
STRING address (A80).

. and here is yet another way:

STRING firstname (A24).
STRING lastname (A24).
STRING address (A80).

11.15 VARIABLE ATTRIBUTE

VARIABLE ATTRIBUTE
VARIABLES=var_list
ATTRIBUTE=name(’value’) [name(’value’)]. . .
ATTRIBUTE=name[index|(’'value’) [name[index](’value’)]. . .
DELETE=name [name]. . .
DELETE=namel[index| [name[index]]. . .

VARIABLE ATTRIBUTE adds, modifies, or removes user-defined attributes associated with
variables in the active dataset. Custom variable attributes are not interpreted by PspP, but
they are saved as part of system files and may be used by other software that reads them.

Chapter 11: Manipulating variables 108

The required VARIABLES subcommand must come first. Specify the variables to which
the following ATTRIBUTE or DELETE subcommand should apply.

Use the ATTRIBUTE subcommand to add or modify custom variable attributes. Specify
the name of the attribute as an identifier (see Section 6.1 [Tokens|, page 28), followed by the
desired value, in parentheses, as a quoted string. The specified attributes are then added
or modified in the variables specified on VARIABLES. Attribute names that begin with $
are reserved for PSPP’s internal use, and attribute names that begin with @ or $@ are not
displayed by most PSPP commands that display other attributes. Other attribute names
are not treated specially.

Attributes may also be organized into arrays. To assign to an array element, add an
integer array index enclosed in square brackets ([and 1) between the attribute name and
value. Array indexes start at 1, not 0. An attribute array that has a single element (number
1) is not distinguished from a non-array attribute.

Use the DELETE subcommand to delete an attribute from the variable specified on
VARIABLES. Specify an attribute name by itself to delete an entire attribute, including
all array elements for attribute arrays. Specify an attribute name followed by an array
index in square brackets to delete a single element of an attribute array. In the latter case,
all the array elements numbered higher than the deleted element are shifted down, filling
the vacated position.

To associate custom attributes with the entire active dataset, instead of with particular
variables, use DATAFILE ATTRIBUTE (see Section 8.3 [DATAFILE ATTRIBUTE], page 64)
instead.

VARIABLE ATTRIBUTE takes effect immediately. It is not affected by conditional and
looping structures such as DO IF or LOOP.

11.16 VARIABLE LABELS

VARIABLE LABELS
var_list 'var_label’
[/var_list 'var_label’]

[/var_list 'var_label’]
VARIABLE LABELS associates explanatory names with variables. This name, called a
variable label, is displayed by statistical procedures.

To assign a variable label to a group of variables, specify a list of variable names and
the variable label as a string. To assign different labels to different variables in the same
command, precede the subsequent variable list with a slash (/).

11.17 VARIABLE ALIGNMENT

VARIABLE ALIGNMENT
var_list (LEFT | RIGHT | CENTER)
[/var_list (LEFT | RIGHT | CENTER) |

Chapter 11: Manipulating variables 109

[/var_list (LEFT | RIGHT | CENTER) |

VARIABLE ALIGNMENT sets the alignment of variables for display editing purposes. This
only has effect for third party software. It does not affect the display of variables in the
PSPP output.

11.18 VARIABLE WIDTH

VARIABLE WIDTH
var_list (width)
[/var_list (width)]

[/var_list (width)]

VARIABLE WIDTH sets the column width of variables for display editing purposes. This
only affects third party software. It does not affect the display of variables in the pspp
output.

11.19 VARIABLE LEVEL

VARIABLE LEVEL
var_list (SCALE | NOMINAL | ORDINAL)
[/var_list (SCALE | NOMINAL | ORDINAL) |

[/var_list (SCALE | NOMINAL | ORDINAL) |

VARIABLE LEVEL sets the measurement level of variables. Currently, this has no effect
except for certain third party software.

11.20 VARIABLE ROLE

VARIABLE ROLE
/role var_list
[/role var_list]. . .

VARIABLE ROLE sets the intended role of a variable for use in dialog boxes in graphical
user interfaces. Each role specifies one of the following roles for the variables that follow it:

INPUT An input variable, such as an independent variable.

TARGET An output variable, such as an dependent variable.

BOTH A variable used for input and output.
NONE No role assigned. (This is a variable’s default role.)
PARTITION

Used to break the data into groups for testing.

Chapter 11: Manipulating variables 110

SPLIT No meaning except for certain third party software. (This role’s meaning is
unrelated to SPLIT FILE.)

The PSPPIRE GUI does not yet use variable roles as intended.

11.21 VECTOR

Two possible syntaxes:
VECTOR vec_name=var_list.
VECTOR vec-name_list(count [format]).

VECTOR allows a group of variables to be accessed as if they were consecutive members
of an array with a vector(index) notation.

To make a vector out of a set of existing variables, specify a name for the vector followed
by an equals sign (‘=) and the variables to put in the vector. All the variables in the vector
must be the same type. String variables in a vector must all have the same width.

To make a vector and create variables at the same time, specify one or more vector
names followed by a count in parentheses. This will cause variables named vecl through
veccount to be created as numeric variables. By default, the new variables have print and
write format F8.2, but an alternate format may be specified inside the parentheses before or
after the count and separated from it by white space or a comma. Variable names including
numeric suffixes may not exceed 64 characters in length, and none of the variables may exist
prior to VECTOR.

Vectors created with VECTOR disappear after any procedure or procedure-like command
is executed. The variables contained in the vectors remain, unless they are scratch variables
(see Section 6.7.5 [Scratch Variables], page 43).

Variables within a vector may be referenced in expressions using vector (index) syntax.

11.22 WRITE FORMATS

WRITE FORMATS var_list (fmt_spec) [var_list (fmt_spec)]. . ..

WRITE FORMATS sets the write formats for the specified variables to the specified format
specification. Its syntax is identical to that of FORMATS (see Section 11.4 [FORMATS],
page 101), but WRITE FORMATS sets only write formats, not print formats.

Chapter 12: Data transformations 111

12 Data transformations

The PsPP procedures examined in this chapter manipulate data and prepare the active
dataset for later analyses. They do not produce output, as a rule.

12.1 AGGREGATE

AGGREGATE
OUTFILE={*file_name’ file_handle} [MODE={REPLACE, ADDVARIABLES}]
/PRESORTED
/DOCUMENT
/MISSING=COLUMNWISE
/BREAK=var_list
/dest_var['label’]. . .=agr_func(src_vars, args. ..). ..

AGGREGATE summarizes groups of cases into single cases. Cases are divided into groups
that have the same values for one or more variables called break variables. Several functions
are available for summarizing case contents.

The OUTFILE subcommand is required and must appear first. Specify a system file or
portable file by file name or file handle (see Section 6.9 [File Handles|, page 44), or a dataset
by its name (see Section 6.7 [Datasets], page 32). The aggregated cases are written to this
file. If ‘¥’ is specified, then the aggregated cases replace the active dataset’s data. Use of
OUTFILE to write a portable file is a PSPP extension.

If OUTFILE=* is given, then the subcommand MODE may also be specified. The mode
subcommand has two possible values: ADDVARIABLES or REPLACE. In REPLACE mode, the
entire active dataset is replaced by a new dataset which contains just the break variables
and the destination varibles. In this mode, the new file will contain as many cases as there
are unique combinations of the break variables. In ADDVARIABLES mode, the destination
variables will be appended to the existing active dataset. Cases which have identical com-
binations of values in their break variables, will receive identical values for the destination
variables. The number of cases in the active dataset will remain unchanged. Note that if
ADDVARIABLES is specified, then the data must be sorted on the break variables.

By default, the active dataset will be sorted based on the break variables before ag-
gregation takes place. If the active dataset is already sorted or otherwise grouped in
terms of the break variables, specify PRESORTED to save time. PRESORTED is assumed if
MODE=ADDVARIABLES is used.

Specify DOCUMENT to copy the documents from the active dataset into the aggregate file
(see Section 16.5 [DOCUMENT], page 157). Otherwise, the aggregate file will not contain
any documents, even if the aggregate file replaces the active dataset.

Normally, only a single case (for SD and SD., two cases) need be non-missing in each group
for the aggregate variable to be non-missing. Specifying /MISSING=COLUMNWISE inverts this
behavior, so that the aggregate variable becomes missing if any aggregated value is missing.

If PRESORTED, DOCUMENT, or MISSING are specified, they must appear between OUTFILE
and BREAK.

At least one break variable must be specified on BREAK, a required subcommand. The
values of these variables are used to divide the active dataset into groups to be summarized.
In addition, at least one dest_var must be specified.

Chapter 12: Data transformations 112

One or more sets of aggregation variables must be specified. Each set comprises a list
of aggregation variables, an equals sign (‘=’), the name of an aggregation function (see the
list below), and a list of source variables in parentheses. Some aggregation functions expect
additional arguments following the source variable names.

Aggregation variables typically are created with no variable label, value labels, or missing
values. Their default print and write formats depend on the aggregation function used, with
details given in the table below. A variable label for an aggregation variable may be specified
just after the variable’s name in the aggregation variable list.

Each set must have exactly as many source variables as aggregation variables. Each
aggregation variable receives the results of applying the specified aggregation function to
the corresponding source variable. The MEAN, MEDIAN, SD, and SUM aggregation functions
may only be applied to numeric variables. All the rest may be applied to numeric and string
variables.

The available aggregation functions are as follows:

FGT (var_name, value)
Fraction of values greater than the specified constant. The default format is
F5.3.

FIN(var_name, low, high)
Fraction of values within the specified inclusive range of constants. The default
format is F5.3.

FLT(var_name, value)
Fraction of values less than the specified constant. The default format is F5.3.

FIRST(var_name)
First non-missing value in break group. The aggregation variable receives the
complete dictionary information from the source variable. The sort performed
by AGGREGATE (and by SORT CASES) is stable, so that the first case with partic-
ular values for the break variables before sorting will also be the first case in
that break group after sorting.

FOUT (var_name, low, high)
Fraction of values strictly outside the specified range of constants. The default
format is F5.3.

LAST(var_name)
Last non-missing value in break group. The aggregation variable receives the
complete dictionary information from the source variable. The sort performed
by AGGREGATE (and by SORT CASES) is stable, so that the last case with partic-
ular values for the break variables before sorting will also be the last case in
that break group after sorting.

MAX (var_name)
Maximum value. The aggregation variable receives the complete dictionary
information from the source variable.

MEAN (var_name)
Arithmetic mean. Limited to numeric values. The default format is F8.2.

Chapter 12: Data transformations 113

MEDIAN (var_name)
The median value. Limited to numeric values. The default format is F8.2.

MIN(var_name)
Minimum value. The aggregation variable receives the complete dictionary
information from the source variable.

N(var_name)
Number of non-missing values. The default format is F7.0 if weighting is not
enabled, F8.2 if it is (see Section 13.7 [WEIGHT], page 124).

N Number of cases aggregated to form this group. The default format is F7.0 if
weighting is not enabled, F8.2 if it is (see Section 13.7 [WEIGHT], page 124).

NMISS (var_name)
Number of missing values. The default format is F7.0 if weighting is not enabled,
F8.2 if it is (see Section 13.7 [WEIGHT], page 124).

NU(var_name)
Number of non-missing values. Each case is considered to have a weight of
1, regardless of the current weighting variable (see Section 13.7 [WEIGHT],
page 124). The default format is F7.0.

NU Number of cases aggregated to form this group. Each case is considered to have
a weight of 1, regardless of the current weighting variable. The default format
is F7.0.

NUMISS (var_name)
Number of missing values. Each case is considered to have a weight of 1,
regardless of the current weighting variable. The default format is F7.0.

PGT(var_name, value)
Percentage between 0 and 100 of values greater than the specified constant.
The default format is F5.1.

PIN(var_name, low, high)
Percentage of values within the specified inclusive range of constants. The
default format is F'5.1.

PLT(var_name, value)
Percentage of values less than the specified constant. The default format is
F5.1.

POUT(var_name, low, high)
Percentage of values strictly outside the specified range of constants. The de-
fault format is F5.1.

SD(var_name)
Standard deviation of the mean. Limited to numeric values. The default format
is F'8.2.

SUM(var_name)
Sum. Limited to numeric values. The default format is F8.2.

Chapter 12: Data transformations 114

Aggregation functions compare string values in terms of internal character codes. On
most modern computers, this is ASCII or a superset thereof.

The aggregation functions listed above exclude all user-missing values from calculations.
To include user-missing values, insert a period (‘.”) at the end of the function name. (e.g.
‘SUM.’). (Be aware that specifying such a function as the last token on a line will cause the

period to be interpreted as the end of the command.)

AGGREGATE both ignores and cancels the current SPLIT FILE settings (see Section 13.5
[SPLIT FILE], page 122).

12.2 AUTORECODE

AUTORECODE VARIABLES=src_vars INTO dest_vars
[/DESCENDING |
[/PRINT |
[/GROUP]
[/BLANK = {VALID, MISSING}]

The AUTORECODE procedure considers the n values that a variable takes on and maps
them onto values 1...n on a new numeric variable.

Subcommand VARIABLES is the only required subcommand and must come first. Specify
VARIABLES, an equals sign (‘=’), a list of source variables, INTO, and a list of target variables.
There must the same number of source and target variables. The target variables must not
already exist.

By default, increasing values of a source variable (for a string, this is based on character
code comparisons) are recoded to increasing values of its target variable. To cause increasing
values of a source variable to be recoded to decreasing values of its target variable (n down
to 1), specify DESCENDING.

PRINT is currently ignored.

The GROUP subcommand is relevant only if more than one variable is to be recoded. It
causes a single mapping between source and target values to be used, instead of one map
per variable.

If /BLANK=MISSING is given, then string variables which contain only whitespace are
recoded as SYSMIS. If /BLANK=VALID is given then they will be allocated a value like any
other. /BLANK is not relevant to numeric values. /BLANK=VALID is the default.

AUTORECODE is a procedure. It causes the data to be read.

12.3 COMPUTE
COMPUTE variable = expression.

or
COMPUTE vector(index) = expression.

COMPUTE assigns the value of an expression to a target variable. For each case, the
expression is evaluated and its value assigned to the target variable. Numeric and string
variables may be assigned. When a string expression’s width differs from the target vari-
able’s width, the string result of the expression is truncated or padded with spaces on the
right as necessary. The expression and variable types must match.

Chapter 12: Data transformations 115

For numeric variables only, the target variable need not already exist. Numeric variables
created by COMPUTE are assigned an F8.2 output format. String variables must be declared
before they can be used as targets for COMPUTE.

The target variable may be specified as an element of a vector (see Section 11.21 [VEC-
TOR], page 110). In this case, an expression index must be specified in parentheses fol-
lowing the vector name. The expression index must evaluate to a numeric value that, after
rounding down to the nearest integer, is a valid index for the named vector.

Using COMPUTE to assign to a variable specified on LEAVE (see Section 11.5 [LEAVE],
page 101) resets the variable’s left state. Therefore, LEAVE should be specified following
COMPUTE, not before.

COMPUTE is a transformation. It does not cause the active dataset to be read.

When COMPUTE is specified following TEMPORARY (see Section 13.6 [TEMPORARY],
page 123), the LAG function may not be used (see [LAG], page 57).

12.4 COUNT

COUNT var_name = var. .. (value...).

Each value takes one of the following forms:
number
string
numl THRU num?2
MISSING
SYSMIS
where numl is a numeric expression or the words LO
or LOWEST

and num?2 is a numeric expression or HI
or HIGHEST

COUNT creates or replaces a numeric target variable that counts the occurrence of a
criterion value or set of values over one or more test variables for each case.

The target variable values are always nonnegative integers. They are never missing.
The target variable is assigned an F8.2 output format. See Section 6.7.4 [Input and Output
Formats|, page 34. Any variables, including string variables, may be test variables.

User-missing values of test variables are treated just like any other values. They are not
treated as system-missing values. User-missing values that are criterion values or inside
ranges of criterion values are counted as any other values. However (for numeric variables),
keyword MISSING may be used to refer to all system- and user-missing values.

COUNT target variables are assigned values in the order specified. In the command COUNT
A=A B(1) /B=A B(2) ., the following actions occur:

— The number of occurrences of 1 between A and B is counted.
— A is assigned this value.
— The number of occurrences of 1 between B and the new value of A is counted.

— B is assigned this value.

Chapter 12: Data transformations 116

Despite this ordering, all COUNT criterion variables must exist before the procedure is
executed—they may not be created as target variables earlier in the command! Break such
a command into two separate commands.

The examples below may help to clarify.
A. Assuming QO0, Q2, ..., Q9 are numeric variables, the following commands:

1. Count the number of times the value 1 occurs through these variables for each case
and assigns the count to variable QCOUNT.

2. Print out the total number of times the value 1 occurs throughout all cases using
DESCRIPTIVES. See Section 15.1 [DESCRIPTIVES], page 128, for details.

COUNT QCOUNT=Q0 TO Q9(1).
DESCRIPTIVES QCOUNT /STATISTICS=SUM.

B. Given these same variables, the following commands:

1. Count the number of valid values of these variables for each case and assigns the
count to variable QVALID.

2. Multiplies each value of QVALID by 10 to obtain a percentage of valid values, using
COMPUTE. See Section 12.3 [COMPUTE], page 114, for details.

3. Print out the percentage of valid values across all cases, using DESCRIPTIVES. See
Section 15.1 [DESCRIPTIVES], page 128, for details.

COUNT QVALID=QO TO Q9 (LO THRU HI).
COMPUTE QVALID=QVALID%*10.
DESCRIPTIVES QVALID /STATISTICS=MEAN.

12.5 FLIP
FLIP /VARIABLES=var_list /NEWNAMES=var_name.

FLIP transposes rows and columns in the active dataset. It causes cases to be swapped
with variables, and vice versa.

All variables in the transposed active dataset are numeric. String variables take on the
system-missing value in the transposed file.

N subcommands are required. If specified, the VARIABLES subcommand selects variables
to be transformed into cases, and variables not specified are discarded. If the VARIABLES
subcommand is omitted, all variables are selected for transposition.

The variables specified by NEWNAMES, which must be a string variable, is used to give
names to the variables created by FLIP. Only the first 8 characters of the variable are used.
If NEWNAMES is not specified then the default is a variable named CASE_LBL, if it exists. If
it does not then the variables created by FLIP are named VARO000 through VAR999, then
VAR1000, VAR1001, and so on.

When a NEWNAMES variable is available, the names must be canonicalized before becoming
variable names. Invalid characters are replaced by letter ‘V’ in the first position, or by ‘_’ in
subsequent positions. If the name thus generated is not unique, then numeric extensions are
added, starting with 1, until a unique name is found or there are no remaining possibilities.
If the latter occurs then the FLIP operation aborts.

The resultant dictionary contains a CASE_LBL variable, a string variable of width 8,
which stores the names of the variables in the dictionary before the transposition. Vari-

Chapter 12: Data transformations 117

ables names longer than 8 characters are truncated. If the active dataset is subsequently
transposed using FLIP, this variable can be used to recreate the original variable names.

FLIP honors N OF CASES (see Section 13.2 [N OF CASES], page 121). It ignores
TEMPORARY (see Section 13.6 [TEMPORARY], page 123), so that “temporary”
transformations become permanent.

12.6 IF

IF condition variable=expression.
or
IF condition vector(index)=expression.

The IF transformation conditionally assigns the value of a target expression to a target
variable, based on the truth of a test expression.

Specify a boolean-valued expression (see Chapter 7 [Expressions|, page 46) to be tested
following the IF keyword. This expression is evaluated for each case. If the value is true,
then the value of the expression is computed and assigned to the specified variable. If the
value is false or missing, nothing is done. Numeric and string variables may be assigned.
When a string expression’s width differs from the target variable’s width, the string result of
the expression is truncated or padded with spaces on the right as necessary. The expression
and variable types must match.

The target variable may be specified as an element of a vector (see Section 11.21 [VEC-
TOR], page 110). In this case, a vector index expression must be specified in parentheses
following the vector name. The index expression must evaluate to a numeric value that,
after rounding down to the nearest integer, is a valid index for the named vector.

Using IF to assign to a variable specified on LEAVE (see Section 11.5 [LEAVE], page 101)
resets the variable’s left state. Therefore, LEAVE should be specified following IF, not before.

When IF is specified following TEMPORARY (see Section 13.6 [TEMPORARY], page 123),
the LAG function may not be used (see [LAG], page 57).

12.7 RECODE

The RECODE command is used to transform existing values into other, user specified values.
The general form is:

RECODE src_vars

(src_value src_value ... = dest_value)
(src_value src_value ... = dest_value)
(src_value src_value ... = dest_value) . ..

[INTO dest_vars|.

Following the RECODE keyword itself comes src_vars which is a list of variables whose
values are to be transformed. These variables may be string variables or they may be
numeric. However the list must be homogeneous; you may not mix string variables and
numeric variables in the same recoding.

After the list of source variables, there should be one or more mappings. Each mapping
is enclosed in parentheses, and contains the source values and a destination value separated
by a single ‘=’. The source values are used to specify the values in the dataset which need to

Chapter 12: Data transformations 118

change, and the destination value specifies the new value to which they should be changed.
Each src_value may take one of the following forms:

number If the source variables are numeric then src_value may be a literal number.

string If the source variables are string variables then src_value may be a literal string
(like all strings, enclosed in single or double quotes).

numl THRU num?2
This form is valid only when the source variables are numeric. It specifies all
values in the range between numl and num?2, including both endpoints of the
range. By convention, numl should be less than num2. Open-ended ranges
may be specified using ‘L0’ or ‘LOWEST’ for num1 or ‘HI’ or ‘HIGHEST’ for num2.

‘MISSING’ The literal keyword ‘MISSING’ matches both system missing and user missing
values. It is valid for both numeric and string variables.

‘SYSMIS’ The literal keyword ‘SYSMIS’ matches system missing values. It is valid for both
numeric variables only.

‘ELSE’ The ‘ELSE’ keyword may be used to match any values which are not matched
by any other src_value appearing in the command. If this keyword appears, it
should be used in the last mapping of the command.

[

After the source variables comes an ‘=" and then the dest_value. The dest_value may
take any of the following forms:

number A literal numeric value to which the source values should be changed. This
implies the destination variable must be numeric.

string A literal string value (enclosed in quotation marks) to which the source values
should be changed. This implies the destination variable must be a string
variable.

‘SYSMIS’ The keyword ‘SYSMIS’ changes the value to the system missing value. This
implies the destination variable must be numeric.

‘COPY’ The special keyword ‘COPY’ means that the source value should not be modified,
but copied directly to the destination value. This is meaningful only if ‘INTO
dest_vars’ is specified.

Mappings are considered from left to right. Therefore, if a value is matched by a src_value
from more than one mapping, the first (leftmost) mapping which matches will be considered.
Any subsequent matches will be ignored.

The clause ‘INTO dest_vars’ is optional. The behaviour of the command is slightly
different depending on whether it appears or not.

If ‘INTO dest_vars’ does not appear, then values will be recoded “in place”. This means
that the recoded values are written back to the source variables from whence the original
values came. In this case, the dest_value for every mapping must imply a value which has
the same type as the src_value. For example, if the source value is a string value, it is not
permissible for dest_value to be ‘SYSMIS’ or another forms which implies a numeric result.
It is also not permissible for dest_value to be longer than the width of the source variable.

Chapter 12: Data transformations 119

The following example two numeric variables x and y are recoded in place. Zero is
recoded to 99, the values 1 to 10 inclusive are unchanged, values 1000 and higher are
recoded to the system-missing value and all other values are changed to 999:

recode x y
(0 = 99)
(1 THRU 10 = COPY)
(1000 THRU HIGHEST = SYSMIS)
(ELSE = 999).

If ‘INTO dest_vars’ is given, then recoded values are written into the variables specified
in dest_vars, which must therefore contain a list of valid variable names. The number of
variables in dest_vars must be the same as the number of variables in src_vars and the
respective order of the variables in dest_vars corresponds to the order of src_vars. That is
to say, recoded values whose original value came from the nth variable in src_vars will be
placed into the nth variable in dest_vars. The source variables will be unchanged. If any
mapping implies a string as its destination value, then the respective destination variable
must already exist, or have been declared using STRING or another transformation. Numeric
variables however will be automatically created if they don’t already exist. The following
example deals with two source variables, a and b which contain string values. Hence there
are two destination variables vl and v2. Any cases where a or b contain the values ‘apple’,
‘pear’ or ‘pomegranate’ will result in v1 or v2 being filled with the string ‘fruit’ whilst
cases with ‘tomato’, ‘lettuce’ or ‘carrot’ will result in ‘vegetable’. Any other values will
produce the result ‘unknown’:

string v1 (a20).
string v2 (a20).

recode a b
("apple" "pear" "pomegranate" = "fruit")
("tomato" "lettuce" "carrot" = "vegetable")
(ELSE = "unknown")
into v1 v2.

There is one very special mapping, not mentioned above. If the source variable is a string
variable then a mapping may be specified as ‘ (CONVERT)’. This mapping, if it appears must
be the last mapping given and the ‘INTO dest_vars’ clause must also be given and must not
refer to a string variable. ‘CONVERT’ causes a number specified as a string to be converted to
a numeric value. For example it will convert the string ‘"3"’ into the numeric value 3 (note
that it will not convert ‘three’ into 3). If the string cannot be parsed as a number, then the
system-missing value is assigned instead. In the following example, cases where the value of
x (a string variable) is the empty string, are recoded to 999 and all others are converted to
the numeric equivalent of the input value. The results are placed into the numeric variable
v

recode x
(nn — 999)
(convert)
into y.

It is possible to specify multiple recodings on a single command. Introduce additional

recodings with a slash (‘/’) to separate them from the previous recodings:

Chapter 12: Data transformations 120

recode
a (2
/b (1

22) (else = 99)
3) into z

Here we have two recodings. The first affects the source variable a and recodes in-place the
value 2 into 22 and all other values to 99. The second recoding copies the values of b into
the variable z, changing any instances of 1 into 3.

12.8 SORT CASES
SORT CASES BY var_list[({DIA}] [var_list[({DIA}]] ...

SORT CASES sorts the active dataset by the values of one or more variables.

Specify BY and a list of variables to sort by. By default, variables are sorted in ascending
order. To override sort order, specify (D) or (DOWN) after a list of variables to get descending
order, or (A) or (UP) for ascending order. These apply to all the listed variables up until
the preceding (A), (D), (UP) or (DOWN).

The sort algorithms used by SORT CASES are stable. That is, records that have equal
values of the sort variables will have the same relative order before and after sorting. As a
special case, re-sorting an already sorted file will not affect the ordering of cases.

SORT CASES is a procedure. It causes the data to be read.

SORT CASES attempts to sort the entire active dataset in main memory. If workspace is

exhausted, it falls back to a merge sort algorithm that involves creates numerous temporary
files.

SORT CASES may not be specified following TEMPORARY.

Chapter 13: Selecting data for analysis 121

13 Selecting data for analysis

This chapter documents PSPP commands that temporarily or permanently select data
records from the active dataset for analysis.

13.1 FILTER

FILTER BY var_name.
FILTER OFF.

FILTER allows a boolean-valued variable to be used to select cases from the data stream
for processing.

To set up filtering, specify BY and a variable name. Keyword BY is optional but rec-
ommended. Cases which have a zero or system- or user-missing value are excluded from
analysis, but not deleted from the data stream. Cases with other values are analyzed. To
filter based on a different condition, use transformations such as COMPUTE or RECODE to
compute a filter variable of the required form, then specify that variable on FILTER.

FILTER OFF turns off case filtering.

Filtering takes place immediately before cases pass to a procedure for analysis. Only one
filter variable may be active at a time. Normally, case filtering continues until it is explicitly
turned off with FILTER OFF. However, if FILTER is placed after TEMPORARY, it filters only
the next procedure or procedure-like command.

13.2 N OF CASES
N [OF CASES] num_of-cases [ESTIMATED].

N OF CASES limits the number of cases processed by any procedures that follow it in the
command stream. N OF CASES 100, for example, tells PSPP to disregard all cases after the
first 100.

When N OF CASES is specified after TEMPORARY, it affects only the next procedure (see
Section 13.6 [TEMPORARY], page 123). Otherwise, cases beyond the limit specified are
not processed by any later procedure.

If the limit specified on N OF CASES is greater than the number of cases in the active
dataset, it has no effect.

When N OF CASES is used along with SAMPLE or SELECT IF, the case limit is applied to
the cases obtained after sampling or case selection, regardless of how N OF CASES is placed
relative to SAMPLE or SELECT IF in the command file. Thus, the commands N OF CASES 100
and SAMPLE .5 will both randomly sample approximately half of the active dataset’s cases,
then select the first 100 of those sampled, regardless of their order in the command file.

N OF CASES with the ESTIMATED keyword gives an estimated number of cases before DATA
LIST or another command to read in data. ESTIMATED never limits the number of cases
processed by procedures. PSPP currently does not make use of case count estimates.

Chapter 13: Selecting data for analysis 122

13.3 SAMPLE
SAMPLE numl [FROM num?2].

SAMPLE randomly samples a proportion of the cases in the active file. Unless it follows
TEMPORARY, it operates as a transformation, permanently removing cases from the active
dataset.

The proportion to sample can be expressed as a single number between 0 and 1. If k is
the number specified, and N is the number of currently-selected cases in the active dataset,
then after SAMPLE k., approximately k*N cases will be selected.

The proportion to sample can also be specified in the style SAMPLE m FROM N. With this
style, cases are selected as follows:

1. If N is equal to the number of currently-selected cases in the active dataset, exactly m
cases will be selected.

2. If N is greater than the number of currently-selected cases in the active dataset, an
equivalent proportion of cases will be selected.

3. If N is less than the number of currently-selected cases in the active, exactly m cases
will be selected from the first N cases in the active dataset.

SAMPLE and SELECT IF are performed in the order specified by the syntax file.

SAMPLE is always performed before N OF CASES, regardless of ordering in the syntax file
(see Section 13.2 [N OF CASES], page 121).

The same values for SAMPLE may result in different samples. To obtain the same sample,
use the SET command to set the random number seed to the same value before each SAMPLE.
Different samples may still result when the file is processed on systems with differing en-
dianness or floating-point formats. By default, the random number seed is based on the
system time.

13.4 SELECT IF
SELECT IF expression.

SELECT IF selects cases for analysis based on the value of expression. Cases not selected
are permanently eliminated from the active dataset, unless TEMPORARY is in effect (see
Section 13.6 [TEMPORARY], page 123).

Specify a boolean expression (see Chapter 7 [Expressions|, page 46). If the value of the
expression is true for a particular case, the case will be analyzed. If the expression has a
false or missing value, then the case will be deleted from the data stream.

Place SELECT IF as early in the command file as possible. Cases that are deleted early
can be processed more efficiently in time and space.

When SELECT IF is specified following TEMPORARY (see Section 13.6 [TEMPORARY],
page 123), the LAG function may not be used (see [LAG], page 57).

13.5 SPLIT FILE

SPLIT FILE [{LAYERED, SEPARATE}] BY var_list.
SPLIT FILE OFF.

Chapter 13: Selecting data for analysis 123

SPLIT FILE allows multiple sets of data present in one data file to be analyzed separately
using single statistical procedure commands.

Specify a list of variable names to analyze multiple sets of data separately. Groups
of adjacent cases having the same values for these variables are analyzed by statistical
procedure commands as one group. An independent analysis is carried out for each group
of cases, and the variable values for the group are printed along with the analysis.

When a list of variable names is specified, one of the keywords LAYERED or SEPARATE
may also be specified. If provided, either keyword are ignored.

Groups are formed only by adjacent cases. To create a split using a variable where like
values are not adjacent in the working file, you should first sort the data by that variable
(see Section 12.8 [SORT CASES], page 120).

Specify OFF to disable SPLIT FILE and resume analysis of the entire active dataset as a
single group of data.

When SPLIT FILE is specified after TEMPORARY, it affects only the next procedure (see
Section 13.6 [TEMPORARY], page 123).

13.6 TEMPORARY
TEMPORARY.

TEMPORARY is used to make the effects of transformations following its execution tem-
porary. These transformations will affect only the execution of the next procedure or
procedure-like command. Their effects will not be saved to the active dataset.

The only specification on TEMPORARY is the command name.

TEMPORARY may not appear within a DO IF or LOOP construct. It may appear only once
between procedures and procedure-like commands.

Scratch variables cannot be used following TEMPORARY.
An example may help to clarify:

DATA LIST /X 1-2.
BEGIN DATA.

2

4

10

15

20

24
END DATA.

COMPUTE X=X/2.

TEMPORARY .
COMPUTE X=X+3.

DESCRIPTIVES X.
DESCRIPTIVES X.

Chapter 13: Selecting data for analysis 124

The data read by the first DESCRIPTIVES are 4, 5, 8, 10.5, 13, 15. The data read by the
first DESCRIPTIVES are 1, 2, 5, 7.5, 10, 12.

13.7 WEIGHT

WEIGHT BY var_name.
WEIGHT OFF.

WEIGHT assigns cases varying weights, changing the frequency distribution of the active
dataset. Execution of WEIGHT is delayed until data have been read.

If a variable name is specified, WEIGHT causes the values of that variable to be used as
weighting factors for subsequent statistical procedures. Use of keyword BY is optional but
recommended. Weighting variables must be numeric. Scratch variables may not be used
for weighting (see Section 6.7.5 [Scratch Variables|, page 43).

When OFF is specified, subsequent statistical procedures will weight all cases equally.

A positive integer weighting factor w on a case will yield the same statistical output as
would replicating the case w times. A weighting factor of 0 is treated for statistical purposes
as if the case did not exist in the input. Weighting values need not be integers, but negative
and system-missing values for the weighting variable are interpreted as weighting factors of
0. User-missing values are not treated specially.

When WEIGHT is specified after TEMPORARY, it affects only the next procedure (see
Section 13.6 [TEMPORARY], page 123).

)

WEIGHT does not cause cases in the active dataset to be replicated in memory.

Chapter 14: Conditional and Looping Constructs 125

14 Conditional and Looping Constructs

This chapter documents PSPP commands used for conditional execution, looping, and flow
of control.

14.1 BREAK
BREAK.

BREAK terminates execution of the innermost currently executing LOOP construct.

BREAK is allowed only inside LOOP. . .END LOOP. See Section 14.4 [LOOP], page 126, for
more details.

14.2 DO IF
DO IF condition.

[ELSE IF condition.

[ELSE.
END IF.
DO IF allows one of several sets of transformations to be executed, depending on user-
specified conditions.

If the specified boolean expression evaluates as true, then the block of code following
DO IF is executed. If it evaluates as missing, then none of the code blocks is executed. If
it is false, then the boolean expression on the first ELSE IF, if present, is tested in turn,
with the same rules applied. If all expressions evaluate to false, then the ELSE code block
is executed, if it is present.

When DO IF or ELSE IF is specified following TEMPORARY (see Section 13.6 [TEMPO-
RARY], page 123), the LAG function may not be used (see [LAG], page 57).

14.3 DO REPEAT
DO REPEAT dummy_name=expansion. . ..

END REPEAT [PRINT].

expansion takes one of the following forms:
var_list
num_or_range. . .
‘string’. . .

ALL

num_or_range takes one of the following forms:
number
numl TO num?2

Chapter 14: Conditional and Looping Constructs 126

DO REPEAT repeats a block of code, textually substituting different variables, numbers,
or strings into the block with each repetition.

Specify a dummy variable name followed by an equals sign (‘=") and the list of replace-
ments. Replacements can be a list of existing or new variables, numbers, strings, or ALL to
specify all existing variables. When numbers are specified, runs of increasing integers may
be indicated as numl TO num2, so that ‘1 TO 5’ is short for ‘1 2 34 5.

Multiple dummy variables can be specified. Each variable must have the same number
of replacements.

The code within DO REPEAT is repeated as many times as there are replacements for each
variable. The first time, the first value for each dummy variable is substituted; the second
time, the second value for each dummy variable is substituted; and so on.

Dummy variable substitutions work like macros. They take place anywhere in a line
that the dummy variable name occurs. This includes command and subcommand names,
so command and subcommand names that appear in the code block should not be used
as dummy variable identifiers. Dummy variable substitutions do not occur inside quoted
strings, comments, unquoted strings (such as the text on the TITLE or DOCUMENT command),
or inside BEGIN DATA. . .END DATA.

Substitution occurs only on whole words, so that, for example, a dummy variable PRINT
would not be substituted into the word PRINTOUT.

New variable names used as replacements are not automatically created as variables, but
only if used in the code block in a context that would create them, e.g. on a NUMERIC or
STRING command or on the left side of a COMPUTE assignment.

Any command may appear within DO REPEAT, including nested DO REPEAT commands.
If INCLUDE or INSERT appears within DO REPEAT, the substitutions do not apply to the
included file.

If PRINT is specified on END REPEAT, the commands after substitutions are made are
printed to the listing file, prefixed by a plus sign (‘+’).

14.4 LOOP
LOOP [index_var=start TO end [BY incr|| [IF condition].

END LOOP [IF condition].
LOQOP iterates a group of commands. A number of termination options are offered.

Specify index_var to make that variable count from one value to another by a particular
increment. index_var must be a pre-existing numeric variable. start, end, and incr are
numeric expressions (see Chapter 7 [Expressions|, page 46.)

During the first iteration, index_var is set to the value of start. During each successive
iteration, index_var is increased by the value of incr. If end > start, then the loop terminates
when index_var > end; otherwise it terminates when index_var < end. If incr is not specified
then it defaults to +1 or -1 as appropriate.

If end > start and incr < 0, or if end < start and incr > 0, then the loop is never executed.
index_var is nevertheless set to the value of start.

Modifying index_var within the loop is allowed, but it has no effect on the value of
index_var in the next iteration.

Chapter 14: Conditional and Looping Constructs 127

Specify a boolean expression for the condition on LOOP to cause the loop to be executed
only if the condition is true. If the condition is false or missing before the loop contents are
executed the first time, the loop contents are not executed at all.

If index and condition clauses are both present on LOOP, the index variable is always set
before the condition is evaluated. Thus, a condition that makes use of the index variable
will always see the index value to be used in the next execution of the body.

Specify a boolean expression for the condition on END LOOP to cause the loop to terminate
if the condition is true after the enclosed code block is executed. The condition is evaluated
at the end of the loop, not at the beginning, so that the body of a loop with only a condition
on END LOOP will always execute at least once.

If neither the index clause nor either condition clause is present, then the loop is executed
max_loops (see Section 16.20 [SET], page 161) times. The default value of max_loops is 40.

BREAK also terminates LOOP execution (see Section 14.1 [BREAK], page 125).

Loop index variables are by default reset to system-missing from one case to another,
not left, unless a scratch variable is used as index. When loops are nested, this is usually
undesired behavior, which can be corrected with LEAVE (see Section 11.5 [LEAVE], page 101)
or by using a scratch variable as the loop index.

When LOOP or END LOOP is specified following TEMPORARY (see Section 13.6 [TEMPO-
RARY], page 123), the LAG function may not be used (see [LAG], page 57).

Chapter 15: Statistics 128

15 Statistics
This chapter documents the statistical procedures that PsPP supports so far.

15.1 DESCRIPTIVES

DESCRIPTIVES
/VARIABLES=var_list
/MISSING={VARIABLE,LISTWISE} {INCLUDE,NOINCLUDE}
/FORMAT={LABELS,NOLABELS} {NOINDEX,INDEX} {LINE,SERTAL}
/SAVE
/STATISTICS={ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,
SKEWNESS,RANGE MINIMUM,MAXIMUM,SUM,DEFAULT,
SESKEWNESS,SEKURTOSIS}
/SORT={NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME}
{A.D}
The DESCRIPTIVES procedure reads the active dataset and outputs descriptive statistics
requested by the user. In addition, it can optionally compute Z-scores.

The VARIABLES subcommand, which is required, specifies the list of variables to be
analyzed. Keyword VARIABLES is optional.

All other subcommands are optional:

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations. If NOINCLUDE is set, which is
the default, user-missing values are excluded. If VARIABLE is set, then missing values are
excluded on a variable by variable basis; if LISTWISE is set, then the entire case is excluded
whenever any value in that case has a system-missing or, if INCLUDE is set, user-missing
value.

The FORMAT subcommand affects the output format. Currently the LABELS/NOLABELS
and NOINDEX/INDEX settings are not used. When SERIAL is set, both valid and missing
number of cases are listed in the output; when NOSERIAL is set, only valid cases are listed.

The SAVE subcommand causes DESCRIPTIVES to calculate Z scores for all the specified
variables. The Z scores are saved to new variables. Variable names are generated by
trying first the original variable name with Z prepended and truncated to a maximum of 8
characters, then the names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZ7Z00
through 277709, ZQZQ00 through ZQZQ09, in that sequence. In addition, Z score variable
names can be specified explicitly on VARIABLES in the variable list by enclosing them in
parentheses after each variable. When Z scores are calculated, PSPP ignores TEMPORARY,
treating temporary transformations as permanent.

The STATISTICS subcommand specifies the statistics to be displayed:
ALL All of the statistics below.
MEAN Arithmetic mean.
SEMEAN Standard error of the mean.
STDDEV Standard deviation.

Chapter 15: Statistics 129

VARIANCE Variance.

KURTOSIS Kurtosis and standard error of the kurtosis.

SKEWNESS Skewness and standard error of the skewness.

RANGE Range.

MINIMUM Minimum value.

MAXIMUM Maximum value.

SUM Sum.

DEFAULT Mean, standard deviation of the mean, minimum, maximum.

SEKURTOSIS
Standard error of the kurtosis.

SESKEWNESS
Standard error of the skewness.

The SORT subcommand specifies how the statistics should be sorted. Most of the possi-
ble values should be self-explanatory. NAME causes the statistics to be sorted by name. By
default, the statistics are listed in the order that they are specified on the VARIABLES sub-
command. The A and D settings request an ascending or descending sort order, respectively.

15.2 FREQUENCIES

FREQUENCIES
/VARIABLES=var_list
/FORMAT={TABLE,NOTABLE,LIMIT(limit) }
{AVALUE,DVALUE,AFREQ,DFREQ}
/MISSING={EXCLUDE,INCLUDE}
/STATISTICS={DEFAULT ,MEAN,SEMEAN , MEDIAN MODE,STDDEV,VARIANCE,
KURTOSIS,SKEWNESS, RANGE,MINIMUM,MAXIMUM,SUM,
SESKEWNESS,SEKURTOSIS,ALL,NONE}
/NTILES=ntiles
/PERCENTILES=percent. . .
JHISTOGRAM=[MINIMUM (x_min)] [MAXIMUM(x_max)]
[{FREQ|(y_max)],PERCENT[(y_max)]}] [{NONORMAL NORMAL}]
/PIECHART=[MINIMUM (x_min)] [MAXIMUM(x_max)]
[{FREQ,PERCENT}] [{NOMISSING,MISSING }]
/BARCHART=|MINIMUM (x_min)] [MAXIMUM (x_max)]
[{FREQ,PERCENT}]
JORDER={ANALYSIS,VARIABLE}

(These options are not currently implemented.)
/HBAR=. ..
/GROUPED=. ..
The FREQUENCIES procedure outputs frequency tables for specified variables.
FREQUENCIES can also calculate and display descriptive statistics (including median and
mode) and percentiles, and various graphical representations of the frequency distribution.

Chapter 15: Statistics 130

The VARIABLES subcommand is the only required subcommand. Specify the variables
to be analyzed.

The FORMAT subcommand controls the output format. It has several possible settings:

TABLE, the default, causes a frequency table to be output for every variable specified.
NOTABLE prevents them from being output. LIMIT with a numeric argument causes
them to be output except when there are more than the specified number of values in
the table.

Normally frequency tables are sorted in ascending order by value. This is AVALUE.
DVALUE tables are sorted in descending order by value. AFREQ and DFREQ tables are
sorted in ascending and descending order, respectively, by frequency count.

The MISSING subcommand controls the handling of user-missing values. When EXCLUDE,
the default, is set, user-missing values are not included in frequency tables or statistics.
When INCLUDE is set, user-missing are included. System-missing values are never included
in statistics, but are listed in frequency tables.

The available STATISTICS are the same as available in DESCRIPTIVES (see Section 15.1
[DESCRIPTIVES], page 128), with the addition of MEDIAN, the data’s median value, and
MODE, the mode. (If there are multiple modes, the smallest value is reported.) By default,
the mean, standard deviation of the mean, minimum, and maximum are reported for each
variable.

PERCENTILES causes the specified percentiles to be reported. The percentiles should be
presented at a list of numbers between 0 and 100 inclusive. The NTILES subcommand causes
the percentiles to be reported at the boundaries of the data set divided into the specified
number of ranges. For instance, /NTILES=4 would cause quartiles to be reported.

The HISTOGRAM subcommand causes the output to include a histogram for each specified
numeric variable. The X axis by default ranges from the minimum to the maximum value
observed in the data, but the MINIMUM and MAXIMUM keywords can set an explicit range.!
Histograms are not created for string variables.

Specify NORMAL to superimpose a normal curve on the histogram.

The PIECHART subcommand adds a pie chart for each variable to the data. Each slice
represents one value, with the size of the slice proportional to the value’s frequency. By
default, all non-missing values are given slices. The MINIMUM and MAXIMUM keywords can
be used to limit the displayed slices to a given range of values. The keyword NOMISSING
causes missing values to be omitted from the piechart. This is the default. If instead,
MISSING is specified, then a single slice will be included representing all system missing and
user-missing cases.

The BARCHART subcommand produces a bar chart for each variable. The MINIMUM and
MAXIMUM keywords can be used to omit categories whose counts which lie outside the spec-
ified limits. The FREQ option (default) causes the ordinate to display the frequency of each
category, whereas the PERCENT option will display relative percentages.

The FREQ and PERCENT options on HISTOGRAM and PIECHART are accepted but not cur-
rently honoured.

1 The number of bins is chosen according to the Freedman-Diaconis rule: 2 x IQR(x)nil/g, where IQR(x)
is the interquartile range of x and m is the number of samples. Note that EXAMINE uses a different
algorithm to determine bin sizes.

Chapter 15: Statistics 131

The ORDER subcommand is accepted but ignored.

15.3 EXAMINE

EXAMINE
VARIABLES= varl [var2| ... [varN]
[BY factorl [BY subfactorl]
[factor2 [BY subfactor2]]

[factor3 [BY subfactor3]]
]
/STATISTICS={DESCRIPTIVES, EXTREME|(n)], ALL, NONE}
/PLOT={BOXPLOT, NPPLOT, HISTOGRAM, SPREADLEVEL|(t)], ALL, NONE}
/CINTERVAL p
/COMPARE={GROUPS,VARIABLES}
/ID=identity_variable
/{TOTAL,NOTOTAL}
/PERCENTILE=[percentiles|={HAVERAGE, WAVERAGE, ROUND, AEM-
PIRICAL, EMPIRICAL }
/MISSING={LISTWISE, PAIRWISE} [{EXCLUDE, INCLUDE}]
[{NOREPORT,REPORT}]

The EXAMINE command is used to perform exploratory data analysis. In particular, it is
useful for testing how closely a distribution follows a normal distribution, and for finding
outliers and extreme values.

The VARIABLES subcommand is mandatory. It specifies the dependent variables and
optionally variables to use as factors for the analysis. Variables listed before the first BY
keyword (if any) are the dependent variables. The dependent variables may optionally
be followed by a list of factors which tell PSPP how to break down the analysis for each
dependent variable.

Following the dependent variables, factors may be specified. The factors (if desired)
should be preceded by a single BY keyword. The format for each factor is

factorvar [BY subfactorvar].

Each unique combination of the values of factorvar and subfactorvar divide the dataset
into cells. Statistics will be calculated for each cell and for the entire dataset (unless NOTOTAL
is given).

The STATISTICS subcommand specifies which statistics to show. DESCRIPTIVES will
produce a table showing some parametric and non-parametrics statistics. EXTREME produces
a table showing the extremities of each cell. A number in parentheses, n determines how
many upper and lower extremities to show. The default number is 5.

The subcommands TOTAL and NOTOTAL are mutually exclusive. If TOTAL appears, then
statistics will be produced for the entire dataset as well as for each cell. If NOTOTAL appears,
then statistics will be produced only for the cells (unless no factor variables have been
given). These subcommands have no effect if there have been no factor variables specified.

The PLOT subcommand specifies which plots are to be produced if any. Available plots
are HISTOGRAM, NPPLOT, BOXPLOT and SPREADLEVEL. The first three can be used to visualise

Chapter 15: Statistics 132

how closely each cell conforms to a normal distribution, whilst the spread vs. level plot can
be useful to visualise how the variance of differs between factors. Boxplots will also show
you the outliers and extreme values.?

The SPREADLEVEL plot displays the interquartile range versus the median. It takes an
optional parameter t, which specifies how the data should be transformed prior to plotting.
The given value t is a power to which the data is raised. For example, if t is given as 2,
then the data will be squared. Zero, however is a special value. If ¢ is 0 or is omitted, then
data will be transformed by taking its natural logarithm instead of raising to the power of
t.

The COMPARE subcommand is only relevant if producing boxplots, and it is only useful
there is more than one dependent variable and at least one factor. If /COMPARE=GROUPS is
specified, then one plot per dependent variable is produced, each of which contain boxplots
for all the cells. If /COMPARE=VARIABLES is specified, then one plot per cell is produced, each
containing one boxplot per dependent variable. If the /COMPARE subcommand is omitted,
then PSPP behaves as if /COMPARE=GROUPS were given.

The ID subcommand is relevant only if /PLOT=BOXPLOT or /STATISTICS=EXTREME has
been given. If given, it should provide the name of a variable which is to be used to
labels extreme values and outliers. Numeric or string variables are permissible. If the ID
subcommand is not given, then the case number will be used for labelling.

The CINTERVAL subcommand specifies the confidence interval to use in calculation of the
descriptives command. The default is 95%.

The PERCENTILES subcommand specifies which percentiles are to be calculated, and
which algorithm to use for calculating them. The default is to calculate the 5, 10, 25, 50,
75, 90, 95 percentiles using the HAVERAGE algorithm.

The TOTAL and NOTOTAL subcommands are mutually exclusive. If NOTOTAL is given and
factors have been specified in the VARIABLES subcommand, then then statistics for the
unfactored dependent variables are produced in addition to the factored variables. If there
are no factors specified then TOTAL and NOTOTAL have no effect.

The following example will generate descriptive statistics and histograms for two vari-
ables scorel and score2. Two factors are given, viz: gender and gender BY culture. There-
fore, the descriptives and histograms will be generated for each distinct value of gender and
for each distinct combination of the values of gender and race. Since the NOTOTAL keyword
is given, statistics and histograms for scorel and score2 covering the whole dataset are not
produced.

EXAMINE scorel score2 BY
gender
gender BY culture
/STATISTICS = DESCRIPTIVES
/PLOT = HISTOGRAM
/NOTOTAL.

Here is a second example showing how the examine command can be used to find
extremities.

2 HISTOGRAM uses Sturges’ rule to determine the number of bins, as approximately 1+ log2(n), where n is
the number of samples. Note that FREQUENCIES uses a different algorithm to find the bin size.

Chapter 15: Statistics 133

EXAMINE height weight BY
gender
/STATISTICS = EXTREME (3)
/PLOT = BOXPLOT
/COMPARE = GROUPS
/ID = name.

In this example, we look at the height and weight of a sample of individuals and how
they differ between male and female. A table showing the 3 largest and the 3 smallest values
of height and weight for each gender, and for the whole dataset will be shown. Boxplots will
also be produced. Because /COMPARE = GROUPS was given, boxplots for male and female will
be shown in the same graphic, allowing us to easily see the difference between the genders.
Since the variable name was specified on the ID subcommand, this will be used to label the
extreme values.

Warning! If many dependent variables are specified, or if factor variables are specified
for which there are many distinct values, then EXAMINE will produce a very large quantity
of output.

15.4 GRAPH

GRAPH
JHISTOGRAM [(NORMAL)|= var
/SCATTERPLOT [(BIVARIATE)] = varl WITH var2 [BY var3]
/BAR = {summary-function(varl) | count-function} BY var2 [BY var3]
[/MISSING={LISTWISE, VARIABLE} [{EXCLUDE, INCLUDE}]]
[{NOREPORT,REPORTY}]

The GRAPH produces graphical plots of data. Only one of the subcommands HISTOGRAM
or SCATTERPLOT can be specified, i.e. only one plot can be produced per call of GRAPH. The
MISSING is optional.

15.4.1 Scatterplot

The subcommand SCATTERPLOT produces an xy plot of the data. The different values of
the optional third variable var3 will result in different colours and/or markers for the plot.
The following is an example for producing a scatterplot.

GRAPH
/SCATTERPLOT = height WITH weight BY gender.

This example will produce a scatterplot where height is plotted versus weight. Depending
on the value of the gender variable, the colour of the datapoint is different. With this plot
it is possible to analyze gender differences for height vs. weight relation.

15.4.2 Histogram

The subcommand HISTOGRAM produces a histogram. Only one variable is allowed for the
histogram plot. The keyword NORMAL may be specified in parentheses, to indicate that the
ideal normal curve should be superimposed over the histogram. For an alternative method
to produce histograms see Section 15.3 [EXAMINE]|, page 131. The following example
produces a histogram plot for the variable weight.

Chapter 15: Statistics 134

GRAPH
/HISTOGRAM = weight.

15.4.3 Bar Chart

The subcommand BAR produces a bar chart. This subcommand requires that a count-
function be specified (with no arguments) or a summary-function with a variable varl in
parentheses. Following the summary or count function, the keyword BY should be specified
and then a catagorical variable, var2. The values of the variable var2 determine the labels
of the bars to be plotted. Optionally a second categorical variable var3 may be specified in
which case a clustered (grouped) bar chart is produced.

Valid count functions are
COUNT The weighted counts of the cases in each category.

PCT The weighted counts of the cases in each category expressed as a percentage of
the total weights of the cases.

CUFREQ The cumulative weighted counts of the cases in each category.

CUPCT The cumulative weighted counts of the cases in each category expressed as a
percentage of the total weights of the cases.

The summary function is applied to varl across all cases in each category. The recognised
summary functions are:

SUM The sum.

MEAN The arithmetic mean.
MAXIMUM The maximum value.
MINIMUM The minimum value.

The following examples assume a dataset which is the results of a survey. Each respon-
dent has indicated annual income, their sex and city of residence. One could create a bar
chart showing how the mean income varies between of residents of different cities, thus:

GRAPH /BAR = MEAN(income) BY city.
This can be extended to also indicate how income in each city differs between the sexes.
GRAPH /BAR = MEAN(income) BY city BY sex.

One might also want to see how many respondents there are from each city. This can
be achieved as follows:

GRAPH /BAR = COUNT BY city.

Bar charts can also be produced using the Section 15.2 [FREQUENCIES], page 129 and
Section 15.6 [CROSSTABS], page 135 commands.

15.5 CORRELATIONS

CORRELATIONS
/VARIABLES = var_list | WITH var_list |

[

Chapter 15: Statistics 135

/VARIABLES = var_list | WITH var_list |
/VARIABLES = var_list | WITH var_list |

]

[/PRINT={TWOTAIL, ONETAIL} {SIG, NOSIG}]
[/STATISTICS=DESCRIPTIVES XPROD ALL]
[/MISSING={PAIRWISE, LISTWISE} {INCLUDE, EXCLUDE} |

The CORRELATIONS procedure produces tables of the Pearson correlation coefficient for
a set of variables. The significance of the coefficients are also given.

At least one VARIABLES subcommand is required. If the WITH keyword is used, then a
non-square correlation table will be produced. The variables preceding WITH, will be used
as the rows of the table, and the variables following will be the columns of the table. If no
WITH subcommand is given, then a square, symmetrical table using all variables is produced.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well as
system-missing values.

If LISTWISE is set, then the entire case is excluded from analysis whenever any variable
specified in any /VARIABLES subcommand contains a missing value. If PAIRWISE is set,
then a case is considered missing only if either of the values for the particular coefficient
are missing. The default is PAIRWISE.

The PRINT subcommand is used to control how the reported significance values are
printed. If the TWOTAIL option is used, then a two-tailed test of significance is printed. If
the ONETAIL option is given, then a one-tailed test is used. The default is TWOTAIL.

If the NOSIG option is specified, then correlation coefficients with significance less than
0.05 are highlighted. If SIG is specified, then no highlighting is performed. This is the
default.

The STATISTICS subcommand requests additional statistics to be displayed. The key-
word DESCRIPTIVES requests that the mean, number of non-missing cases, and the non-
biased estimator of the standard deviation are displayed. These statistics will be displayed
in a separated table, for all the variables listed in any /VARIABLES subcommand. The
XPROD keyword requests cross-product deviations and covariance estimators to be displayed
for each pair of variables. The keyword ALL is the union of DESCRIPTIVES and XPROD.

15.6 CROSSTABS

CROSSTABS

JTABLES=var_list BY var_list [BY var_list]. . .

/MISSING={TABLE,INCLUDE,REPORT}

/WRITE={NONE,CELLS,ALL}

/FORMAT={TABLES,NOTABLES}
{PIVOT,NOPIVOT}
{AVALUE,DVALUE}
{NOINDEX,INDEX}

Chapter 15: Statistics 136

{BOX,NOBOX}
/CELLS={COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
ASRESIDUAL,ALL,NONE}
/COUNT={ASIS,CASE,CELL}
{ROUND,TRUNCATE}
/STATISTICS={CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA D,
KAPPA ,ETA,CORR,ALL,NONE}
/BARCHART

(Integer mode.)
/VARIABLES=var_list (low,high). ..

The CROSSTABS procedure displays crosstabulation tables requested by the user. It can
calculate several statistics for each cell in the crosstabulation tables. In addition, a number
of statistics can be calculated for each table itself.

The TABLES subcommand is used to specify the tables to be reported. Any number
of dimensions is permitted, and any number of variables per dimension is allowed. The
TABLES subcommand may be repeated as many times as needed. This is the only required
subcommand in general mode.

Occasionally, one may want to invoke a special mode called integer mode. Normally,
in general mode, PSPP automatically determines what values occur in the data. In integer
mode, the user specifies the range of values that the data assumes. To invoke this mode,
specify the VARIABLES subcommand, giving a range of data values in parentheses for each
variable to be used on the TABLES subcommand. Data values inside the range are truncated
to the nearest integer, then assigned to that value. If values occur outside this range, they
are discarded. When it is present, the VARIABLES subcommand must precede the TABLES
subcommand.

In general mode, numeric and string variables may be specified on TABLES. In integer
mode, only numeric variables are allowed.

The MISSING subcommand determines the handling of user-missing values. When set
to TABLE, the default, missing values are dropped on a table by table basis. When set
to INCLUDE, user-missing values are included in tables and statistics. When set to REPORT,
which is allowed only in integer mode, user-missing values are included in tables but marked
with an ‘M’ (for “missing”) and excluded from statistical calculations.

Currently the WRITE subcommand is ignored.

The FORMAT subcommand controls the characteristics of the crosstabulation tables to be
displayed. It has a number of possible settings:

TABLES, the default, causes crosstabulation tables to be output. NOTABLES suppresses
them.

PIVOT, the default, causes each TABLES subcommand to be displayed in a pivot table
format. NOPIVOT causes the old-style crosstabulation format to be used.

AVALUE, the default, causes values to be sorted in ascending order. DVALUE asserts a
descending sort order.

INDEX and NOINDEX are currently ignored.
BOX and NOBOX is currently ignored.

Chapter 15: Statistics 137

The CELLS subcommand controls the contents of each cell in the displayed crosstabula-
tion table. The possible settings are:

COUNT Frequency count.
ROW Row percent.
COLUMN Column percent.
TOTAL Table percent.

EXPECTED
Expected value.

RESIDUAL
Residual.

SRESIDUAL
Standardized residual.

ASRESIDUAL
Adjusted standardized residual.

ALL All of the above.
NONE Suppress cells entirely.

‘/CELLS’ without any settings specified requests COUNT, ROW, COLUMN, and TOTAL. If
CELLS is not specified at all then only COUNT will be selected.

By default, crosstabulation and statistics use raw case weights, without rounding. Use
the /COUNT subcommand to perform rounding: CASE rounds the weights of individual
weights as cases are read, CELL rounds the weights of cells within each crosstabulation
table after it has been constructed, and ASIS explicitly specifies the default non-rounding
behavior. When rounding is requested, ROUND, the default, rounds to the nearest integer
and TRUNCATE rounds toward zero.

The STATISTICS subcommand selects statistics for computation:

CHISQ
Pearson chi-square, likelihood ratio, Fisher’s exact test, continuity correction,
linear-by-linear association.

PHI Phi.

CC Contingency coefficient.

LAMBDA Lambda.

ucC Uncertainty coefficient.
BTAU Tau-b.

CTAU Tau-c.

RISK Risk estimate.
GAMMA Gamma.

D Somers’ D.

Chapter 15: Statistics 138

KAPPA Cohen’s Kappa.

ETA Eta.
CORR Spearman correlation, Pearson’s r.
ALL All of the above.

NONE No statistics.

Selected statistics are only calculated when appropriate for the statistic. Certain statis-
tics require tables of a particular size, and some statistics are calculated only in integer
mode.

‘/STATISTICS’ without any settings selects CHISQ. If the STATISTICS subcommand is
not given, no statistics are calculated.

The ‘/BARCHART’ subcommand produces a clustered bar chart for the first two variables
on each table. If a table has more than two variables, the counts for the third and subsequent
levels will be aggregated and the chart will be produces as if there were only two variables.

Please note: Currently the implementation of CROSSTABS has the following limitations:
e Significance of some symmetric and directional measures is not calculated.

e Asymptotic standard error is not calculated for Goodman and Kruskal’s tau or sym-
metric Somers’ d.

e Approximate T is not calculated for symmetric uncertainty coefficient.

Fixes for any of these deficiencies would be welcomed.

15.7 FACTOR
FACTOR VARIABLES=var_list

[/METHOD = {CORRELATION, COVARIANCE} |
[JANALYSIS=var_list |
[JEXTRACTION={PC, PAF}]
[/ROTATION={VARIMAX, EQUAMAX, QUARTIMAX, PROMAX[(k)], NOROTATE}]

[/PRINT=[INITIAL] [EXTRACTION] [ROTATION] [UNIVARIATE] [COR-
RELATION] [COVARIANCE] [DET] [KMO] [SIG] [ALL] [DEFAULT] |

[/PLOT=[EIGEN]]
[/JFORMAT=[SORT] [BLANK(n)] [DEFAULT] |

[/CRITERIA=[FACTORS(n)] [MINEIGEN(])] ITERATE(m)] [ECON-
VERGE (delta)] [DEFAULT)] |

[/MISSING=[{LISTWISE, PAIRWISE}] [{INCLUDE, EXCLUDE}] |

Chapter 15: Statistics 139

The FACTOR command performs Factor Analysis or Principal Axis Factoring on a dataset.
It may be used to find common factors in the data or for data reduction purposes.

The VARIABLES subcommand is required. It lists the variables which are to partake in
the analysis. (The ANALYSIS subcommand may optionally further limit the variables that
participate; it is not useful and implemented only for compatibility.)

The /EXTRACTION subcommand is used to specify the way in which factors (components)
are extracted from the data. If PC is specified, then Principal Components Analysis is used.
If PAF is specified, then Principal Axis Factoring is used. By default Principal Components
Analysis will be used.

The /ROTATION subcommand is used to specify the method by which the extracted
solution will be rotated. Three orthogonal rotation methods are available: VARIMAX (which
is the default), EQUAMAX, and QUARTIMAX. There is one oblique rotation method, viz: PROMAX.
Optionally you may enter the power of the promax rotation k, which must be enclosed in
parentheses. The default value of k is 5. If you don’t want any rotation to be performed,
the word NOROTATE will prevent the command from performing any rotation on the data.

The /METHOD subcommand should be used to determine whether the covariance matrix
or the correlation matrix of the data is to be analysed. By default, the correlation matrix
is analysed.

The /PRINT subcommand may be used to select which features of the analysis are re-
ported:

e UNIVARIATE A table of mean values, standard deviations and total weights are printed.
e INITIAL Initial communalities and eigenvalues are printed.
e EXTRACTION Extracted communalities and eigenvalues are printed.
e ROTATION Rotated communalities and eigenvalues are printed.
e CORRELATION The correlation matrix is printed.
e COVARIANCE The covariance matrix is printed.
e DET The determinant of the correlation or covariance matrix is printed.
e KMO The Kaiser-Meyer-Olkin measure of sampling adequacy and the Bartlett test of
sphericity is printed.
e SIG The significance of the elements of correlation matrix is printed.
e ALL All of the above are printed.
e DEFAULT Identical to INITIAL and EXTRACTION.
If /PLOT=EIGEN is given, then a “Scree” plot of the eigenvalues will be printed. This can
be useful for visualizing which factors (components) should be retained.

The /FORMAT subcommand determined how data are to be displayed in loading matrices.
If SORT is specified, then the variables are sorted in descending order of significance. If
BLANK (n) is specified, then coefficients whose absolute value is less than n will not be
printed. If the keyword DEFAULT is given, or if no /FORMAT subcommand is given, then no
sorting is performed, and all coefficients will be printed.

The /CRITERIA subcommand is used to specify how the number of extracted factors
(components) are chosen. If FACTORS (n) is specified, where n is an integer, then n factors
will be extracted. Otherwise, the MINEIGEN setting will be used. MINEIGEN(1) requests

Chapter 15: Statistics 140

that all factors whose eigenvalues are greater than or equal to I are extracted. The default
value of I is 1. The ECONVERGE setting has effect only when iterative algorithms for factor
extraction (such as Principal Axis Factoring) are used. ECONVERGE(delta) specifies that
iteration should cease when the maximum absolute value of the communality estimate be-
tween one iteration and the previous is less than delta. The default value of delta is 0.001.
The ITERATE(m) may appear any number of times and is used for two different purposes.
It is used to set the maximum number of iterations (m) for convergence and also to set
the maximum number of iterations for rotation. Whether it affects convergence or rota-
tion depends upon which subcommand follows the ITERATE subcommand. If EXTRACTION
follows, it affects convergence. If ROTATION follows, it affects rotation. If neither ROTATION
nor EXTRACTION follow a ITERATE subcommand it will be ignored. The default value of m
is 25.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well
as system-missing values. This is the default. If LISTWISE is set, then the entire case
is excluded from analysis whenever any variable specified in the VARIABLES subcommand
contains a missing value. If PATRWISE is set, then a case is considered missing only if either
of the values for the particular coefficient are missing. The default is LISTWISE.

15.8 GLM

GLM dependent_vars BY fixed_factors
[/METHOD = SSTYPE(type)]
[/DESIGN = interaction_0 [interaction_1 [... interaction_n]]]
[/INTERCEPT = {INCLUDE|EXCLUDE}]
[/MISSING = {INCLUDE |EXCLUDE}]

The GLM procedure can be used for fixed effects factorial Anova.

The dependent_vars are the variables to be analysed. You may analyse several variables
in the same command in which case they should all appear before the BY keyword.

The fixed_factors list must be one or more categorical variables. Normally it will not
make sense to enter a scalar variable in the fixed_factors and doing so may cause PSPP to
do a lot of unnecessary processing.

The METHOD subcommand is used to change the method for producing the sums of
squares. Available values of type are 1, 2 and 3. The default is type 3.

You may specify a custom design using the DESIGN subcommand. The design comprises
a list of interactions where each interaction is a list of variables separated by a ‘x’. For
example the command

GLM subject BY sex age_group race
/DESIGN = age_group sex group age_group*sex age_group*race

specifies the model subject = age,roup + sex + race + ageyroup * sex + ageyroup * race.
If no DESIGN subcommand is specified, then the default is all possible combinations of the
fixed factors. That is to say

GLM subject BY sex age_group race

Chapter 15: Statistics 141

implies the model subject = age,roup + sex + race + ageyroup * sex + age,roup * race +
Sex * race + age,roup * Sexr x race.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set then, for the purposes of GLM analysis, only system-missing values are considered to
be missing; user-missing values are not regarded as missing. If EXCLUDE is set, which is
the default, then user-missing values are considered to be missing as well as system-missing
values. A case for which any dependent variable or any factor variable has a missing value
is excluded from the analysis.

15.9 LOGISTIC REGRESSION
LOGISTIC REGRESSION [VARIABLES =] dependent_var WITH predictors

[/CATEGORICAL = categorical_predictors]
[{/NOCONST | /ORIGIN | /NOORIGIN }]
[/PRINT = [SUMMARY] [DEFAULT] [CI(confidence)] [ALL]]

[/CRITERIA = [BCON(min_delta)] ITERATE(max_interations)]
[LCON (min_likelihood_delta)] [EPS(min_epsilon)]
[CUT(cut_point)]]

[/MISSING = {INCLUDE|EXCLUDE}]|

Bivariate Logistic Regression is used when you want to explain a dichotomous dependent
variable in terms of one or more predictor variables.

The minimum command is
LOGISTIC REGRESSION y WITH x1 x2 ... xn.

Here, y is the dependent variable, which must be dichotomous and xI ... xn are the
predictor variables whose coefficients the procedure estimates.

By default, a constant term is included in the model. Hence, the full model is y =
bo + b1x1 + b2X2 + ...+ ann

Predictor variables which are categorical in nature should be listed on the /CATEGORICAL
subcommand. Simple variables as well as interactions between variables may be listed here.

If you want a model without the constant term by, use the keyword /ORIGIN. /NOCONST
is a synonym for /ORIGIN.

An iterative Newton-Raphson procedure is used to fit the model. The /CRITERIA sub-
command is used to specify the stopping criteria of the procedure, and other parameters.
The value of cut_point is used in the classification table. It is the threshold above which
predicted values are considered to be 1. Values of cut_point must lie in the range [0,1]. Dur-
ing iterations, if any one of the stopping criteria are satisfied, the procedure is considered
complete. The stopping criteria are:

e The number of iterations exceeds max_iterations. The default value of max_iterations
is 20.

Chapter 15: Statistics 142

e The change in the all coefficient estimates are less than min_delta. The default value
of min_delta is 0.001.

e The magnitude of change in the likelihood estimate is less than min_likelihood_delta.
The default value of min_delta is zero. This means that this criterion is disabled.

e The differential of the estimated probability for all cases is less than min_epsilon. In
other words, the probabilities are close to zero or one. The default value of min_epsilon

is 0.00000001.

The PRINT subcommand controls the display of optional statistics. Currently there is
one such option, CI, which indicates that the confidence interval of the odds ratio should
be displayed as well as its value. CI should be followed by an integer in parentheses, to
indicate the confidence level of the desired confidence interval.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well as
system-missing values. This is the default.

15.10 MEANS

MEANS [TABLES =]
{var_list}
[BY {var_list} [BY {var_list} [BY {var_list} ...]]]

[/{var_list}
[BY {var_list} [BY {var_list} [BY {var_list} ...]]]]

[/CELLS = [MEAN] [COUNT] [STDDEV] [SEMEAN] [SUM] [MIN] [MAX] [RANGE]
[VARIANCE] [KURT] [SEKURT]
[SKEW] [SESKEW] [FIRST] [LAST]
[HARMONIC] [GEOMETRIC]
[DEFAULT]
[ALL]
[NONE]]

[/MISSING = [TABLE] [INCLUDE] [DEPENDENT]]

You can use the MEANS command to calculate the arithmetic mean and similar statistics,
either for the dataset as a whole or for categories of data.

The simplest form of the command is
MEANS v.

which calculates the mean, count and standard deviation for v. If you specify a grouping
variable, for example

MEANS v BY g.

then the means, counts and standard deviations for v after having been grouped by g will
be calculated. Instead of the mean, count and standard deviation, you could specify the
statistics in which you are interested:

Chapter 15: Statistics 143

MEANS x y BY g
/CELLS = HARMONIC SUM MIN.

This example calculates the harmonic mean, the sum and the minimum values of x and
y grouped by g.

The CELLS subcommand specifies which statistics to calculate. The available statistics
are:

e MEAN The arithmetic mean.

e COUNT The count of the values.

e STDDEV The standard deviation.

e SEMEAN The standard error of the mean.

e SUM The sum of the values.

e MIN The minimum value.

e MAX The maximum value.

e RANGE The difference between the maximum and minimum values.
e VARIANCE The variance.

e FIRST The first value in the category.

e LAST The last value in the category.

e SKEW The skewness.

e SESKEW The standard error of the skewness.
e KURT The kurtosis

e SEKURT The standard error of the kurtosis.
e HARMONIC The harmonic mean.

e GEOMETRIC The geometric mean.

In addition, three special keywords are recognized:
e DEFAULT This is the same as MEAN COUNT STDDEV.
e ALL All of the above statistics will be calculated.

e NONE No statistics will be calculated (only a summary will be shown).

More than one table can be specified in a single command. Each table is separated by
a ‘/’. For example

MEANS TABLES =
cdeBY x
/abBY xy
/f BY y BY z.

has three tables (the ‘TABLE =’ is optional). The first table has three dependent variables
¢, d and e and a single categorical variable x. The second table has two dependent variables
a and b, and two categorical variables x and y. The third table has a single dependent
variables f and a categorical variable formed by the combination of y and z.

By default values are omitted from the analysis only if missing values (either system
missing or user missing) for any of the variables directly involved in their calculation are
encountered. This behaviour can be modified with the /MISSING subcommand. Three
options are possible: TABLE, INCLUDE and DEPENDENT.

Chapter 15: Statistics 144

/MISSING = TABLE causes cases to be dropped if any variable is missing in the table
specification currently being processed, regardless of whether it is needed to calculate the
statistic.

/MISSING = INCLUDE says that user missing values, either in the dependent variables or
in the categorical variables should be taken at their face value, and not excluded.

/MISSING = DEPENDENT says that user missing values, in the dependent variables should
be taken at their face value, however cases which have user missing values for the categorical
variables should be omitted from the calculation.

15.11 NPAR TESTS
NPAR TESTS

nonparametric test subcommands

[/STATISTICS={DESCRIPTIVES} |
[/MISSING={ANALYSIS, LISTWISE} {INCLUDE, EXCLUDE} |

[/METHOD=EXACT [TIMER [(n)]]]

NPAR TESTS performs nonparametric tests. Non parametric tests make very few assump-
tions about the distribution of the data. One or more tests may be specified by using
the corresponding subcommand. If the /STATISTICS subcommand is also specified, then
summary statistics are produces for each variable that is the subject of any test.

Certain tests may take a long time to execute, if an exact figure is required. Therefore,
by default asymptotic approximations are used unless the subcommand /METHOD=EXACT is
specified. Exact tests give more accurate results, but may take an unacceptably long time
to perform. If the TIMER keyword is used, it sets a maximum time, after which the test will
be abandoned, and a warning message printed. The time, in minutes, should be specified
in parentheses after the TIMER keyword. If the TIMER keyword is given without this figure,
then a default value of 5 minutes is used.

15.11.1 Binomial test
[/BINOMIAL[(p)|=var_list[(valuel[, value2)] |]

The /BINOMIAL subcommand compares the observed distribution of a dichotomous vari-
able with that of a binomial distribution. The variable p specifies the test proportion of
the binomial distribution. The default value of 0.5 is assumed if p is omitted.

If a single value appears after the variable list, then that value is used as the threshold
to partition the observed values. Values less than or equal to the threshold value form the
first category. Values greater than the threshold form the second category.

If two values appear after the variable list, then they will be used as the values which a
variable must take to be in the respective category. Cases for which a variable takes a value
equal to neither of the specified values, take no part in the test for that variable.

Chapter 15: Statistics 145

If no values appear, then the variable must assume dichotomous values. If more than
two distinct, non-missing values for a variable under test are encountered then an error
occurs.

If the test proportion is equal to 0.5, then a two tailed test is reported. For any other test
proportion, a one tailed test is reported. For one tailed tests, if the test proportion is less
than or equal to the observed proportion, then the significance of observing the observed
proportion or more is reported. If the test proportion is more than the observed proportion,
then the significance of observing the observed proportion or less is reported. That is to
say, the test is always performed in the observed direction.

PSPP uses a very precise approximation to the gamma function to compute the binomial
significance. Thus, exact results are reported even for very large sample sizes.

15.11.2 Chisquare Test
[/CHISQUARE=var_list[(lo,hi)] [/[EXPECTED={EQUALIf1, f2 ... fn}] |

The /CHISQUARE subcommand produces a chi-square statistic for the differences between
the expected and observed frequencies of the categories of a variable. Optionally, a range
of values may appear after the variable list. If a range is given, then non integer values are
truncated, and values outside the specified range are excluded from the analysis.

The /EXPECTED subcommand specifies the expected values of each category. There must
be exactly one non-zero expected value, for each observed category, or the EQUAL keyword
must be specified. You may use the notation n*f to specify n consecutive expected categories
all taking a frequency of f. The frequencies given are proportions, not absolute frequencies.
The sum of the frequencies need not be 1. If no /EXPECTED subcommand is given, then
then equal frequencies are expected.

15.11.3 Cochran Q Test
[/COCHRAN = var_list]

The Cochran Q test is used to test for differences between three or more groups. The
data for var_list in all cases must assume exactly two distinct values (other than missing
values).

The value of Q will be displayed and its Asymptotic significance based on a chi-square
distribution.

15.11.4 Friedman Test
[/FRIEDMAN = var_list |

The Friedman test is used to test for differences between repeated measures when there
is no indication that the distributions are normally distributed.

A list of variables which contain the measured data must be given. The procedure prints
the sum of ranks for each variable, the test statistic and its significance.

15.11.5 Kendall’s W Test
[/JKENDALL = var_list |

The Kendall test investigates whether an arbitrary number of related samples come from
the same population. It is identical to the Friedman test except that the additional statistic

Chapter 15: Statistics 146

W, Kendall’s Coefficient of Concordance is printed. It has the range [0,1] — a value of zero
indicates no agreement between the samples whereas a value of unity indicates complete
agreement.

15.11.6 Kolmogorov-Smirnov Test

[/KOLMOGOROV-SMIRNOV ({NORMAL [mu, sigmal, UNIFORM [min, max|, POIS-
SON [lambdal, EXPONENTIAL [scale| }) = var_list |

The one sample Kolmogorov-Smirnov subcommand is used to test whether or not a
dataset is drawn from a particular distribution. Four distributions are supported, wiz:
Normal, Uniform, Poisson and Exponential.

Ideally you should provide the parameters of the distribution against which you wish
to test the data. For example, with the normal distribution the mean (mu)and standard
deviation (sigma) should be given; with the uniform distribution, the minimum (min)and
maximum (max) value should be provided. However, if the parameters are omitted they
will be imputed from the data. Imputing the parameters reduces the power of the test so
should be avoided if possible.

In the following example, two variables score and age are tested to see if they follow a
normal distribution with a mean of 3.5 and a standard deviation of 2.0.

NPAR TESTS
/KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = score age.

If the variables need to be tested against different distributions, then a separate sub-
command must be used. For example the following syntax tests score against a normal
distribution with mean of 3.5 and standard deviation of 2.0 whilst age is tested against a
normal distribution of mean 40 and standard deviation 1.5.

NPAR TESTS
/KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = score
/KOLMOGOROV-SMIRNOV (normal 40 1.5) = age.

The abbreviated subcommand K-S may be used in place of KOLMOGOROV-SMIRNOV.

15.11.7 Kruskal-Wallis Test
[/KRUSKAL-WALLIS = var_list BY var (lower, upper) |

The Kruskal-Wallis test is used to compare data from an arbitrary number of populations.
It does not assume normality. The data to be compared are specified by var_list. The
categorical variable determining the groups to which the data belongs is given by var. The
limits lower and upper specify the valid range of var. Any cases for which var falls outside
[lower, upper] will be ignored.

The mean rank of each group as well as the chi-squared value and significance of the test
will be printed. The abbreviated subcommand K-W may be used in place of KRUSKAL-WALLIS.

15.11.8 Mann-Whitney U Test
[/MANN-WHITNEY = var_list BY var (groupl, group2) |

The Mann-Whitney subcommand is used to test whether two groups of data come from
different populations. The variables to be tested should be specified in var_list and the
grouping variable, that determines to which group the test variables belong, in var. Var

Chapter 15: Statistics 147

may be either a string or an alpha variable. Groupl and group?2 specify the two values of
var which determine the groups of the test data. Cases for which the var value is neither
groupl or group2 will be ignored.

The value of the Mann-Whitney U statistic, the Wilcoxon W, and the significance will
be printed. The abbreviated subcommand M-W may be used in place of MANN-WHITNEY.

15.11.9 McNemar Test
[/MCNEMAR var_list [WITH var_list [(PAIRED) ||

Use McNemar’s test to analyse the significance of the difference between pairs of corre-
lated proportions.

If the WITH keyword is omitted, then tests for all combinations of the listed variables are
performed. If the WITH keyword is given, and the (PAIRED) keyword is also given, then the
number of variables preceding WITH must be the same as the number following it. In this
case, tests for each respective pair of variables are performed. If the WITH keyword is given,
but the (PAIRED) keyword is omitted, then tests for each combination of variable preceding
WITH against variable following WITH are performed.

The data in each variable must be dichotomous. If there are more than two distinct
variables an error will occur and the test will not be run.

15.11.10 Median Test
[/MEDIAN [(value)] = var_list BY variable (valuel, value2) |

The median test is used to test whether independent samples come from populations
with a common median. The median of the populations against which the samples are to
be tested may be given in parentheses immediately after the /MEDIAN subcommand. If it is
not given, the median will be imputed from the union of all the samples.

4

The variables of the samples to be tested should immediately follow the ‘=’ sign. The
keyword BY must come next, and then the grouping variable. Two values in parentheses
should follow. If the first value is greater than the second, then a 2 sample test is performed
using these two values to determine the groups. If however, the first variable is less than
the second, then a k sample test is conducted and the group values used are all values
encountered which lie in the range [valuel,value2)].

15.11.11 Runs Test
[/RUNS ({MEAN, MEDIAN, MODE, value}) = var_list]

The /RUNS subcommand tests whether a data sequence is randomly ordered.

It works by examining the number of times a variable’s value crosses a given threshold.
The desired threshold must be specified within parentheses. It may either be specified as a
number or as one of MEAN, MEDIAN or MODE. Following the threshold specification comes the
list of variables whose values are to be tested.

The subcommand shows the number of runs, the asymptotic significance based on the
length of the data.

15.11.12 Sign Test
[/SIGN var_list [WITH var_list [(PAIRED)]]]

Chapter 15: Statistics 148

The /SIGN subcommand tests for differences between medians of the variables listed.
The test does not make any assumptions about the distribution of the data.

If the WITH keyword is omitted, then tests for all combinations of the listed variables are
performed. If the WITH keyword is given, and the (PAIRED) keyword is also given, then the
number of variables preceding WITH must be the same as the number following it. In this
case, tests for each respective pair of variables are performed. If the WITH keyword is given,
but the (PAIRED) keyword is omitted, then tests for each combination of variable preceding
WITH against variable following WITH are performed.

15.11.13 Wilcoxon Matched Pairs Signed Ranks Test

[/WILCOXON var_list [WITH var_list [(PAIRED)]|

The /WILCOXON subcommand tests for differences between medians of the variables listed.
The test does not make any assumptions about the variances of the samples. It does however
assume that the distribution is symmetrical.

If the WITH keyword is omitted, then tests for all combinations of the listed variables are
performed. If the WITH keyword is given, and the (PAIRED) keyword is also given, then the
number of variables preceding WITH must be the same as the number following it. In this
case, tests for each respective pair of variables are performed. If the WITH keyword is given,
but the (PAIRED) keyword is omitted, then tests for each combination of variable preceding
WITH against variable following WITH are performed.

15.12 T-TEST

T-TEST
/MISSING={ANALYSIS,LISTWISE} {EXCLUDE,INCLUDE}
/CRITERIA=CI(confidence)

(One Sample mode.)
TESTVAL=test_value
/VARIABLES=var_list

(Independent Samples mode.)
GROUPS=var(valuel [, value2])
/VARIABLES=var_list

(Paired Samples mode.)
PAIRS=var_list [WITH var_list [(PAIRED)] |

The T-TEST procedure outputs tables used in testing hypotheses about means. It oper-
ates in one of three modes:

e One Sample mode.
e Independent Groups mode.

e Paired mode.

Chapter 15: Statistics 149

Each of these modes are described in more detail below. There are two optional subcom-
mands which are common to all modes.

The /CRITERIA subcommand tells PSPP the confidence interval used in the tests. The
default value is 0.95.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well as
system-missing values. This is the default.

If LISTWISE is set, then the entire case is excluded from analysis whenever any variable
specified in the /VARIABLES, /PAIRS or /GROUPS subcommands contains a missing value. If
ANALYSIS is set, then missing values are excluded only in the analysis for which they would
be needed. This is the default.

15.12.1 One Sample Mode

The TESTVAL subcommand invokes the One Sample mode. This mode is used to test a pop-
ulation mean against a hypothesized mean. The value given to the TESTVAL subcommand is
the value against which you wish to test. In this mode, you must also use the /VARIABLES
subcommand to tell PSPP which variables you wish to test.

15.12.2 Independent Samples Mode

The GROUPS subcommand invokes Independent Samples mode or ‘Groups’ mode. This mode
is used to test whether two groups of values have the same population mean. In this mode,
you must also use the /VARIABLES subcommand to tell PSPP the dependent variables you
wish to test.

The variable given in the GROUPS subcommand is the independent variable which deter-
mines to which group the samples belong. The values in parentheses are the specific values
of the independent variable for each group. If the parentheses are omitted and no values
are given, the default values of 1.0 and 2.0 are assumed.

If the independent variable is numeric, it is acceptable to specify only one value inside
the parentheses. If you do this, cases where the independent variable is greater than or equal
to this value belong to the first group, and cases less than this value belong to the second
group. When using this form of the GROUPS subcommand, missing values in the independent
variable are excluded on a listwise basis, regardless of whether /MISSING=LISTWISE was
specified.

15.12.3 Paired Samples Mode

The PAIRS subcommand introduces Paired Samples mode. Use this mode when repeated
measures have been taken from the same samples. If the WITH keyword is omitted, then
tables for all combinations of variables given in the PAIRS subcommand are generated. If
the WITH keyword is given, and the (PAIRED) keyword is also given, then the number of
variables preceding WITH must be the same as the number following it. In this case, tables
for each respective pair of variables are generated. In the event that the WITH keyword is
given, but the (PAIRED) keyword is omitted, then tables for each combination of variable
preceding WITH against variable following WITH are generated.

Chapter 15: Statistics 150

15.13 ONEWAY

ONEWAY
[/VARIABLES = | var_list BY var
J/MISSING={ANALYSIS,LISTWISE} {EXCLUDE,INCLUDE}
/CONTRAST= valuel [, value2] ... [,valueN]
/STATISTICS={DESCRIPTIVES,HOMOGENEITY}
/POSTHOC={BONFERRONI, GH, LSD, SCHEFFE, SIDAK, TUKEY, AL-
PHA ([value])}

The ONEWAY procedure performs a one-way analysis of variance of variables factored by
a single independent variable. It is used to compare the means of a population divided into
more than two groups.

The dependent variables to be analysed should be given in the VARIABLES subcommand.
The list of variables must be followed by the BY keyword and the name of the independent
(or factor) variable.

You can use the STATISTICS subcommand to tell PSPP to display ancillary information.
The options accepted are:

e DESCRIPTIVES Displays descriptive statistics about the groups factored by the in-
dependent variable.

¢ HOMOGENEITY Displays the Levene test of Homogeneity of Variance for the variables
and their groups.

The CONTRAST subcommand is used when you anticipate certain differences between the
groups. The subcommand must be followed by a list of numerals which are the coefficients
of the groups to be tested. The number of coefficients must correspond to the number of
distinct groups (or values of the independent variable). If the total sum of the coefficients are
not zero, then PSPP will display a warning, but will proceed with the analysis. The CONTRAST
subcommand may be given up to 10 times in order to specify different contrast tests. The
MISSING subcommand defines how missing values are handled. If LISTWISE is specified then
cases which have missing values for the independent variable or any dependent variable will
be ignored. If ANALYSIS is specified, then cases will be ignored if the independent variable
is missing or if the dependent variable currently being analysed is missing. The default is
ANALYSIS. A setting of EXCLUDE means that variables whose values are user-missing are to
be excluded from the analysis. A setting of INCLUDE means they are to be included. The
default is EXCLUDE.

Using the POSTHOC subcommand you can perform multiple pairwise comparisons on the
data. The following comparison methods are available:

e LSD Least Significant Difference.

e TUKEY Tukey Honestly Significant Difference.
e BONFERRONI Bonferroni test.

e SCHEFFE Scheffé’s test.

e SIDAK Sidak test.

e GH The Games-Howell test.

The optional syntax ALPHA(value) is used to indicate that value should be used as the
confidence level for which the posthoc tests will be performed. The default is 0.05.

Chapter 15: Statistics 151

15.14 QUICK CLUSTER

QUICK CLUSTER var._list
[/CRITERIA=CLUSTERS (k) [MXITER(max_iter)] CONVERGE(epsilon) [NOINITIAL]]
[/MISSING={EXCLUDE,INCLUDE} {LISTWISE, PAIRWISE}]
[/PRINT={INITIAL} {CLUSTERY}]

The QUICK CLUSTER command performs k-means clustering on the dataset. This is useful
when you wish to allocate cases into clusters of similar values and you already know the
number of clusters.

The minimum specification is ‘QUICK CLUSTER’ followed by the names of the
variables which contain the cluster data. Normally you will also want to specify
/CRITERIA=CLUSTERS (k) where k is the number of clusters. If this is not specified, then k
defaults to 2.

If you use /CRITERIA=NOINITIAL then a naive algorithm to select the initial clusters is
used. This will provide for faster execution but less well separated initial clusters and hence
possibly an inferior final result.

QUICK CLUSTER uses an iterative algorithm to select the clusters centers. The subcom-
mand /CRITERIA=MXITER (max_iter) sets the maximum number of iterations. During clas-
sification, PSPP will continue iterating until until max_iter iterations have been done or the
convergence criterion (see below) is fulfilled. The default value of max_iter is 2.

If however, you specify /CRITERIA=NOUPDATE then after selecting the initial centers, no
further update to the cluster centers is done. In this case, max_iter, if specified. is ignored.

The subcommand /CRITERIA=CONVERGE (epsilon) is used to set the convergence crite-
rion. The value of convergence criterion is epsilon times the minimum distance between the
initial cluster centers. Iteration stops when the mean cluster distance between one iteration
and the next is less than the convergence criterion. The default value of epsilon is zero.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are considered at their face value and not as missing values.
If EXCLUDE is set, which is the default, user-missing values are excluded as well as system-
missing values.

If LISTWISE is set, then the entire case is excluded from the analysis whenever any of the
clustering variables contains a missing value. If PATIRWISE is set, then a case is considered
missing only if all the clustering variables contain missing values. Otherwise it is clustered
on the basis of the non-missing values. The default is LISTWISE.

The PRINT subcommand requests additional output to be printed. If INITIAL is set, then
the initial cluster memberships will be printed. If CLUSTER is set, the cluster memberships
of the individual cases will be displayed (potentially generating lengthy output).

15.15 RANK

RANK
[VARIABLES=] var_list [{A,D}] [BY var_list]
JTIES={MEAN,LOW ,HIGH,CONDENSE}
JFRACTION={BLOM,TUKEY, VW RANKIT}
/PRINT[={YES,NO}
/MISSING={EXCLUDE,INCLUDE}

Chapter 15: Statistics 152

JRANK [INTO var_list]
/NTILES(k) INTO var_Iist]
/NORMAL [INTO var_list]
/PERCENT [INTO var_list]
/RFRACTION [INTO var_list]
/PROPORTION [INTO var_list]
/N [INTO var_Iist]

/SAVAGE [INTO var_list]

The RANK command ranks variables and stores the results into new variables.

The VARIABLES subcommand, which is mandatory, specifies one or more variables whose
values are to be ranked. After each variable, ‘A’ or ‘D’ may appear, indicating that the
variable is to be ranked in ascending or descending order. Ascending is the default. If a
BY keyword appears, it should be followed by a list of variables which are to serve as group
variables. In this case, the cases are gathered into groups, and ranks calculated for each
group.

The TIES subcommand specifies how tied values are to be treated. The default is to
take the mean value of all the tied cases.

The FRACTION subcommand specifies how proportional ranks are to be calculated. This
only has any effect if NORMAL or PROPORTIONAL rank functions are requested.

The PRINT subcommand may be used to specify that a summary of the rank variables
created should appear in the output.

The function subcommands are RANK, NTILES, NORMAL, PERCENT, RFRACTION,
PROPORTION and SAVAGE. Any number of function subcommands may appear. If none
are given, then the default is RANK. The NTILES subcommand must take an integer
specifying the number of partitions into which values should be ranked. Each subcommand
may be followed by the INTO keyword and a list of variables which are the variables to be
created and receive the rank scores. There may be as many variables specified as there are
variables named on the VARIABLES subcommand. If fewer are specified, then the variable
names are automatically created.

The MISSING subcommand determines how user missing values are to be treated. A
setting of EXCLUDE means that variables whose values are user-missing are to be excluded
from the rank scores. A setting of INCLUDE means they are to be included. The default is
EXCLUDE.

15.16 REGRESSION

The REGRESSION procedure fits linear models to data via least-squares estimation. The pro-
cedure is appropriate for data which satisfy those assumptions typical in linear regression:

e The data set contains n observations of a dependent variable, say Yi,...,Y,, and n
observations of one or more explanatory variables. Let X, X1, ..., Xy, denote the
n observations of the first explanatory variable; Xs1,. . .,Xs, denote the n observations
of the second explanatory variable; Xj1,. . .,X, denote the n observations of the kth
explanatory variable.

e The dependent variable Y has the following relationship to the explanatory variables:
Y; = by + 01 X1 + ... + b Xy + Z; where by, by, ...,b, are unknown coefficients, and

Chapter 15: Statistics 153

Zy, ..., 4, are independent, normally distributed noise terms with mean zero and com-
mon variance. The noise, or error terms are unobserved. This relationship is called the
linear model.

The REGRESSION procedure estimates the coefficients by, ...,b, and produces output
relevant to inferences for the linear model.

15.16.1 Syntax

REGRESSION
/VARIABLES=var_list
/DEPENDENT=var_list
/STATISTICS={ALL, DEFAULTS, R, COEFF, ANOVA, BCOV, CI[conf]}
/SAVE={PRED, RESID}

The REGRESSION procedure reads the active dataset and outputs statistics relevant to
the linear model specified by the user.

The VARIABLES subcommand, which is required, specifies the list of variables to be
analyzed. Keyword VARIABLES is required. The DEPENDENT subcommand specifies the de-
pendent variable of the linear model. The DEPENDENT subcommand is required. All variables
listed in the VARIABLES subcommand, but not listed in the DEPENDENT subcommand, are
treated as explanatory variables in the linear model.

All other subcommands are optional:

The STATISTICS subcommand specifies which statistics are to be displayed. The follow-
ing keywords are accepted:

ALL All of the statistics below.

R The ratio of the sums of squares due to the model to the total sums of squares
for the dependent variable.

COEFF A table containing the estimated model coefficients and their standard errors.

CI (conf) This item is only relevant if COEFF has also been selected. It specifies that the
confidence interval for the coefficients should be printed. The optional value
conf, which must be in parentheses, is the desired confidence level expressed as
a percentage.

ANOVA Analysis of variance table for the model.
BCOV The covariance matrix for the estimated model coefficients.

DEFAULT The same as if R, COEFF, and ANOVA had been selected. This is what you
get if the /STATISTICS command is not specified, or if it is specified without
any parameters.

The SAVE subcommand causes PSPP to save the residuals or predicted values from the
fitted model to the active dataset. PSPP will store the residuals in a variable called ‘RES1’
if no such variable exists, ‘RES2’ if ‘RES1’ already exists, ‘RES3’ if ‘RES1’ and ‘RES2’ already
exist, etc. It will choose the name of the variable for the predicted values similarly, but
with ‘PRED’ as a prefix. When SAVE is used, PSPP ignores TEMPORARY, treating temporary
transformations as permanent.

Chapter 15: Statistics 154

15.16.2 Examples

The following PSPP syntax will generate the default output and save the predicted values
and residuals to the active dataset.

title ’Demonstrate REGRESSION procedure’.
data list / vO 1-2 (A) vl v2 3-22 (10).
begin data.

b 7.735648 -23.97588
b 6.142625 -19.63854
a 7.651430 -25.26557
c 6.125125 -16.57090
a 8.245789 -25.80001
c 6.031540 -17.56743
a 9.832291 -28.35977
c 5.343832 -16.79548
a 8.838262 -29.25689
b 6.200189 -18.58219
end data.

list.

regression /variables=v0 vl v2 /statistics defaults /dependent=v2
/save pred resid /method=enter.

15.17 RELTIABILITY

RELIABILITY
/VARIABLES=var_list
/SCALE (name) = {var_list, ALL}
/MODEL={ALPHA, SPLIT|(n)]}
/SUMMARY={TOTAL,ALL}
/MISSING={EXCLUDE,INCLUDE}

The RELIABILITY command performs reliability analysis on the data.

The VARIABLES subcommand is required. It determines the set of variables upon which
analysis is to be performed.

The SCALE subcommand determines which variables reliability is to be calculated for. If
it is omitted, then analysis for all variables named in the VARIABLES subcommand will be
used. Optionally, the name parameter may be specified to set a string name for the scale.

The MODEL subcommand determines the type of analysis. If ALPHA is specified, then
Cronbach’s Alpha is calculated for the scale. If the model is SPLIT, then the variables
are divided into 2 subsets. An optional parameter n may be given, to specify how many
variables to be in the first subset. If n is omitted, then it defaults to one half of the variables
in the scale, or one half minus one if there are an odd number of variables. The default
model is ALPHA.

By default, any cases with user missing, or system missing values for any variables given
in the VARIABLES subcommand will be omitted from analysis. The MISSING subcommand
determines whether user missing values are to be included or excluded in the analysis.

Chapter 15: Statistics 155

The SUMMARY subcommand determines the type of summary analysis to be performed.
Currently there is only one type: SUMMARY=TOTAL, which displays per-item analysis tested
against the totals.

15.18 ROC

ROC var_list BY state_var (state_value)
/PLOT = { CURVE [(REFERENCE)], NONE }
/PRINT = [SE | | COORDINATES |
JCRITERIA = [CUTOFF({INCLUDE,EXCLUDE}) |
[TESTPOS ({LARGE,SMALL}) |
[CI (confidence)]
[DISTRIBUTION ({FREE, NEGEXPO })]
/MISSING={EXCLUDE,INCLUDE}

The ROC command is used to plot the receiver operating characteristic curve of a dataset,
and to estimate the area under the curve. This is useful for analysing the efficacy of a
variable as a predictor of a state of nature.

The mandatory var_list is the list of predictor variables. The variable state_var is the
variable whose values represent the actual states, and state_value is the value of this variable
which represents the positive state.

The optional subcommand PLOT is used to determine if and how the ROC curve is drawn.
The keyword CURVE means that the ROC curve should be drawn, and the optional keyword
REFERENCE, which should be enclosed in parentheses, says that the diagonal reference line
should be drawn. If the keyword NONE is given, then no ROC curve is drawn. By default,
the curve is drawn with no reference line.

The optional subcommand PRINT determines which additional tables should be printed.
Two additional tables are available. The SE keyword says that standard error of the area
under the curve should be printed as well as the area itself. In addition, a p-value under the
null hypothesis that the area under the curve equals 0.5 will be printed. The COORDINATES
keyword says that a table of coordinates of the ROC curve should be printed.

The CRITERIA subcommand has four optional parameters:

e The TESTPOS parameter may be LARGE or SMALL. LARGE is the default, and says that
larger values in the predictor variables are to be considered positive. SMALL indicates
that smaller values should be considered positive.

e The CI parameter specifies the confidence interval that should be printed. It has no
effect if the SE keyword in the PRINT subcommand has not been given.

e The DISTRIBUTION parameter determines the method to be used when estimating the
area under the curve. There are two possibilities, viz: FREE and NEGEXPO. The FREE
method uses a non-parametric estimate, and the NEGEXPO method a bi-negative ex-
ponential distribution estimate. The NEGEXPO method should only be used when the
number of positive actual states is equal to the number of negative actual states. The
default is FREE.

e The CUTOFF parameter is for compatibility and is ignored.

The MISSING subcommand determines whether user missing values are to be included
or excluded in the analysis. The default behaviour is to exclude them. Cases are excluded

Chapter 15: Statistics 156

on a listwise basis; if any of the variables in var_list or if the variable state_var is missing,
then the entire case will be excluded.

Chapter 16: Utilities 157

16 Utilities

Commands that don’t fit any other category are placed here.

Most of these commands are not affected by commands like IF and LOOP: they take
effect only once, unconditionally, at the time that they are encountered in the input.

16.1 ADD DOCUMENT
ADD DOCUMENT

'line one’ ’line two’ ... ’last line’ .

ADD DOCUMENT adds one or more lines of descriptive commentary to the active dataset.
Documents added in this way are saved to system files. They can be viewed using SYSFILE
INFO or DISPLAY DOCUMENTS. They can be removed from the active dataset with DROP
DOCUMENTS.

Each line of documentary text must be enclosed in quotation marks, and may not be
more than 80 bytes long. See Section 16.5 [DOCUMENT], page 157.

16.2 CACHE
CACHE.

This command is accepted, for compatibility, but it has no effect.

16.3 CD

CD ’new directory’ .

CD changes the current directory. The new directory will become that specified by the
command.

16.4 COMMENT

Two possibles syntaxes:
COMMENT comment text
*comment text

COMMENT is ignored. It is used to provide information to the author and other readers of
the PSPP syntax file.

COMMENT can extend over any number of lines. Don’t forget to terminate it with a dot
or a blank line.

16.5 DOCUMENT
DOCUMENT documentary_text.

DOCUMENT adds one or more lines of descriptive commentary to the active dataset. Doc-
uments added in this way are saved to system files. They can be viewed using SYSFILE
INFO or DISPLAY DOCUMENTS. They can be removed from the active dataset with DROP
DOCUMENTS.

Specify the documentary text following the DOCUMENT keyword. It is interpreted literally
— any quotes or other punctuation marks will be included in the file. You can extend

Chapter 16: Utilities 158

the documentary text over as many lines as necessary. Lines are truncated at 80 bytes.
Don’t forget to terminate the command with a dot or a blank line. See Section 16.1 [ADD
DOCUMENT], page 157.

16.6 DISPLAY DOCUMENTS
DISPLAY DOCUMENTS.

DISPLAY DOCUMENTS displays the documents in the active dataset. Each document is pre-
ceded by a line giving the time and date that it was added. See Section 16.5 [DOCUMENT],
page 157.

16.7 DISPLAY FILE LABEL
DISPLAY FILE LABEL.

DISPLAY FILE LABEL displays the file label contained in the active dataset, if any. See
Section 16.12 [FILE LABEL], page 159.

This command is a PSPP extension.

16.8 DROP DOCUMENTS
DROP DOCUMENTS.

DROP DOCUMENTS removes all documents from the active dataset. New documents can be
added with DOCUMENT (see Section 16.5 [DOCUMENT], page 157).

DROP DOCUMENTS changes only the active dataset. It does not modify any system files
stored on disk.

16.9 ECHO
ECHO ’arbitrary text’ .

Use ECHO to write arbitrary text to the output stream. The text should be enclosed
in quotation marks following the normal rules for string tokens (see Section 6.1 [Tokens],
page 28).

16.10 ERASE
ERASE FILE file_name.

ERASE FILE deletes a file from the local filesystem. file_name must be quoted. This
command cannot be used if the SAFER (see Section 16.20 [SET], page 161) setting is
active.

16.11 EXECUTE
EXECUTE.

EXECUTE causes the active dataset to be read and all pending transformations to be
executed.

Chapter 16: Utilities 159

16.12 FILE LABEL

FILE LABEL file_label.

FILE LABEL provides a title for the active dataset. This title will be saved into system
files and portable files that are created during this PSPP run.

file_label should not be quoted. If quotes are included, they are literally interpreted and
become part of the file label.

16.13 FINISH
FINISH.

FINISH terminates the current PSPP session and returns control to the operating system.

16.14 HOST

HOST.
HOST COMMAND=[command’...].

HOST suspends the current PSPP session and temporarily returns control to the operating
system. This command cannot be used if the SAFER (see Section 16.20 [SET], page 161)
setting is active.

If the COMMAND subcommand is specified, as a sequence of shell commands as quoted
strings within square brackets, then PSPP executes them together in a single subshell.

If no subcommands are specified, then PSPP invokes an interactive subshell.

16.15 INCLUDE
INCLUDE [FILE=]'file_name’ [ENCODING="encoding’].

INCLUDE causes the PSPP command processor to read an additional command file as if it
were included bodily in the current command file. If errors are encountered in the included
file, then command processing will stop and no more commands will be processed. Include
files may be nested to any depth, up to the limit of available memory.

The INSERT command (see Section 16.16 [INSERT], page 159) is a more flexible alterna-
tive to INCLUDE. An INCLUDE command acts the same as INSERT with ERROR=STOP CD=NO
SYNTAX=BATCH specified.

The optional ENCODING subcommand has the same meaning as with INSERT.

16.16 INSERT

INSERT [FILE=] file_name’
[CD={NO,YES}]
[ERROR={CONTINUE,STOP}]|
[SYNTAX={BATCH,INTERACTIVE}]
[ENCODING={LOCALE, ’charset_name’}].

INSERT is similar to INCLUDE (see Section 16.15 [INCLUDE], page 159) but somewhat
more flexible. It causes the command processor to read a file as if it were embedded in the
current command file.

Chapter 16: Utilities 160

If CD=YES is specified, then before including the file, the current directory will be changed
to the directory of the included file. The default setting is ‘CD=NQ’. Note that this directory
will remain current until it is changed explicitly (with the CD command, or a subsequent
INSERT command with the ‘CD=YES’ option). It will not revert to its original setting even
after the included file is finished processing.

If ERROR=STOP is specified, errors encountered in the inserted file will cause processing to
immediately cease. Otherwise processing will continue at the next command. The default
setting is ERROR=CONTINUE.

If SYNTAX=INTERACTIVE is specified then the syntax contained in the included file must
conform to interactive syntax conventions. See Section 6.3 [Syntax Variants|, page 30. The
default setting is SYNTAX=BATCH.

ENCODING optionally specifies the character set used by the included file. Its argument,
which is not case-sensitive, must be in one of the following forms:

LOCALE The encoding used by the system locale, or as overridden by the SET command
(see Section 16.20 [SET], page 161). On GNU/Linux and other Unix-like sys-
tems, environment variables, e.g. LANG or LC_ALL, determine the system locale.

charset_name
One of the character set names listed by TANA at http://www. iana.org/
assignments/character-sets. Some examples are ASCII (United States),
I1S0-8859-1 (western Europe), EUC-JP (Japan), and windows-1252 (Windows).
Not all systems support all character sets.

Auto,encoding
Automatically detects whether a syntax file is encoded in an Unicode encoding
such as UTF-8, UTF-16, or UTF-32. If it is not, then PSPP generally assumes
that the file is encoded in encoding (an IANA character set name). However,
if encoding is UTF-8, and the syntax file is not valid UTF-8, pPSPP instead
assumes that the file is encoded in windows-1252.

For best results, encoding should be an ASCII-compatible encoding (the most
common locale encodings are all ASCII-compatible), because encodings that are
not ASCII compatible cannot be automatically distinguished from UTF-8.

Auto

Auto,Locale
Automatic detection, as above, with the default encoding taken from the system
locale or the setting on SET LOCALE.

When ENCODING is not specified, the default is taken from the --syntax-encoding
command option, if it was specified, and otherwise it is Auto.

16.17 OUTPUT

OUTPUT MODIFY
/SELECT TABLES
/TABLECELLS SELECT = [{SIGNIFICANCE, COUNT} |
FORMAT = fmt_spec.

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Chapter 16: Utilities 161

Please note: In the above synopsis the characters ‘[’ and ‘]’ are literals. They
must appear in the syntax to be interpreted.

OUTPUT changes the appearance of the tables in which results are printed. In particular,
it can be used to set the format and precision to which results are displayed.

After running this command, the default table appearance parameters will have been
modified and each new output table generated will use the new parameters.

Following /TABLECELLS SELECT = a list of cell classes must appear, enclosed in square
brackets. This list determines the classes of values should be selected for modification. Each
class can be:

SIGNIFICANCE

Significance of tests (p-values).
COUNT Counts or sums of weights.

The value of fimt_spec must be a valid output format (see Section 6.7.4 [Input and Output
Formats|, page 34). Note that not all possible formats are meaningful for all classes.

16.18 PERMISSIONS

PERMISSIONS
FILE="file_name’
/PERMISSIONS = {READONLY,WRITEABLE}.

PERMISSIONS changes the permissions of a file. There is one mandatory subcommand
which specifies the permissions to which the file should be changed. If you set a file’s
permission to READONLY, then the file will become unwritable either by you or anyone else
on the system. If you set the permission to WRITEABLE, then the file will become writeable
by you; the permissions afforded to others will be unchanged. This command cannot be
used if the SAFER (see Section 16.20 [SET], page 161) setting is active.

16.19 PRESERVE and RESTORE
PRESERVE.

RESTORE.

PRESERVE saves all of the settings that SET (see Section 16.20 [SET], page 161) can
adjust. A later RESTORE command restores those settings.

PRESERVE can be nested up to five levels deep.

16.20 SET
SET

(data input)
/BLANKS={SYSMIS,".” number}
/DECIMAL={DOT,COMMA}
J/FORMAT=fmt_spec
J/EPOCH={AUTOMATIC,year}

Chapter 16: Utilities 162

/RIB={NATIVE,MSBFIRST,LSBFIRST,VAX}
JRRB={NATIVE,ISL,ISB,IDL,IDB,VF,VD,VG,ZS,ZL}

(interaction)
/MXERRS=max_errs
/MXWARNS=max_warnings
/WORKSPACE=workspace_size

(syntax execution)
/LOCALE="Ilocale’
/MEXPAND={ON,OFF}
/MITERATE=max_iterations
/MNEST=max_nest
/MPRINT={ON,OFF}
/MXLOOPS=max_loops
/SEED={RANDOM,seed_value}
JUNDEFINED={WARN,NOWARN}
JFUZZBITS=fuzzbits

(data output)
/CC{A B,C,D,E}={"npre,pre,suf,nsuf’,'npre.pre.suf.nsuf’}
/DECIMAL={DOT,COMMA}
/FORMAT=fmt_spec
/WIB={NATIVE,MSBFIRST,LSBFIRST,VAX}
/WRB={NATIVE,ISL,ISB,IDL,IDB,VF,VD,VG,ZS,ZL}

(output routing)
/ERRORS={ON,OFF, TERMINAL,LISTING,BOTH,NONE}
/MESSAGES={ON,OFF,TERMINAL,LISTING,BOTH,NONE}
/PRINTBACK={ON,OFF,TERMINAL,LISTING,BOTH,NONE}
/RESULTS={ON,OFF, TERMINAL,LISTING,BOTH,NONE}

(output driver options)
JHEADERS={NO,YES,BLANK}
JLENGTH={NONE,n_lines}
/MORE={ON,OFF}

/WIDTH={NARROW éWIDTH,n_characters}
/TNUMBERS={VALUES,LABELS,BOTH}
/TVARS={NAMES,LABELS,BOTH}

(logging)
/JOURNAL={ON,OFF} [file_name’]

(system files)
/COMPRESSION={ON,OFF}
/SCOMPRESSION={ON,OFF}

Chapter 16: Utilities 163

(miscellaneous)

/SAFER=0ON
/LOCALE="string’

(obsolete settings accepted for compatibility, but ignored)

/BOXSTRING={"xxx","xxxxxxXXXXX }
/CASE={UPPER,UPLOW}
/CPI=cpi_value
/HIGHRES={ON,OFF}
JHISTOGRAM="¢’
J/LOWRES={AUTO,ON,OFF}
/LPI=Ipi_value
/MENUS={STANDARD,EXTENDED}
/MXMEMORY =max_memory
/SCRIPTTAB="c’

JTB1={"xxx" " xxxxxxxXXXXX "}
/TBFONTS="string’
/XSORT={YES,NO}

SET allows the user to adjust several parameters relating to PSPP’s execution. Since there
are many subcommands to this command, its subcommands will be examined in groups.

For subcommands that take boolean values, ON and YES are synonymous, as are OFF and
NO, when used as subcommand values.

The data input subcommands affect the way that data is read from data files. The data
input subcommands are

BLANKS

DECIMAL

FORMAT

EPOCH

RIB

This is the value assigned to an item data item that is empty or contains only
white space. An argument of SYSMIS or ’.> will cause the system-missing
value to be assigned to null items. This is the default. Any real value may be
assigned.

This value may be set to DOT or COMMA. Setting it to DOT causes the decimal
point character to be ‘.’ and the grouping character to be ¢,’. Setting it to
COMMA causes the decimal point character to be ¢,” and the grouping character
to be ‘.’. If the setting is COMMA, then ‘,’ will not be treated as a field separator
in the DATA LIST command (see Section 8.5 [DATA LIST], page 66). The default
value is determined from the system locale.

Allows the default numeric input/output format to be specified. The default is
F8.2. See Section 6.7.4 [Input and Output Formats|, page 34.

Specifies the range of years used when a 2-digit year is read from a data file or
used in a date construction expression (see Section 7.7.8.4 [Date Construction],
page 54). If a 4-digit year is specified for the epoch, then 2-digit years are
interpreted starting from that year, known as the epoch. If AUTOMATIC (the
default) is specified, then the epoch begins 69 years before the current date.

Chapter 16: Utilities 164

RRB

PSPP extension to set the byte ordering (endianness) used for reading data in IB
or PIB format (see Section 6.7.4.4 [Binary and Hexadecimal Numeric Formats],
page 39). In MSBFIRST ordering, the most-significant byte appears at the left
end of a IB or PIB field. In LSBFIRST ordering, the least-significant byte appears
at the left end. VAX ordering is like MSBFIRST, except that each pair of bytes
is in reverse order. NATIVE, the default, is equivalent to MSBFIRST or LSBFIRST
depending on the native format of the machine running Pspp.

PSPP extension to set the floating-point format used for reading data in RB for-
mat (see Section 6.7.4.4 [Binary and Hexadecimal Numeric Formats], page 39).
The possibilities are:

NATIVE The native format of the machine running pspp. Equivalent to
either IDL or IDB.

ISL 32-bit IEEE 754 single-precision floating point, in little-endian byte
order.

ISB 32-bit IEEE 754 single-precision floating point, in big-endian byte
order.

IDL 64-bit IEEE 754 double-precision floating point, in little-endian
byte order.

IDB 64-bit IEEE 754 double-precision floating point, in big-endian byte
order.

VF 32-bit VAX F format, in VAX-endian byte order.

VD 64-bit VAX D format, in VAX-endian byte order.

VG 64-bit VAX G format, in VAX-endian byte order.

7S 32-bit IBM Z architecture short format hexadecimal floating point,

in big-endian byte order.

7L 64-bit IBM Z architecture long format hexadecimal floating point,
in big-endian byte order.
7 architecture also supports IEEE 754 floating point. The ZS and
ZL formats are only for use with very old input files.

The default is NATIVE.

Interaction subcommands affect the way that PSPP interacts with an online user. The
interaction subcommands are

MXERRS The maximum number of errors before PSPP halts processing of the current

command file. The default is 50.

MXWARNS

The maximum number of warnings + errors before PSPP halts processing the
current command file. The special value of zero means that all warning situ-
ations should be ignored. No warnings will be issued, except a single initial
warning advising the user that warnings will not be given. The default value is
100.

Chapter 16: Utilities 165

Syntax execution subcommands control the way that PSPP commands execute. The
syntax execution subcommands are

LOCALE Overrides the system locale for the purpose of reading and writing syntax and
data files. The argument should be a locale name in the general form language_
country.encoding, where language and country are 2-character language and
country abbreviations, respectively, and encoding is an TANA character set
name. Example locales are en_US.UTF-8 (UTF-8 encoded English as spoken in
the United States) and ja_JP.EUC-JP (EUC-JP encoded Japanese as spoken

in Japan).

MEXPAND

MITERATE

MNEST

MPRINT Currently not used.

MXLOOPS
The maximum number of iterations for an uncontrolled loop (see Section 14.4
[LOOP], page 126). The default max_loops is 40.

SEED The initial pseudo-random number seed. Set to a real number or to RANDOM,
which will obtain an initial seed from the current time of day.

UNDEFINED
Currently not used.

FUZZBITS

The maximum number of bits of errors in the least-significant places to accept
for rounding up a value that is almost halfway between two possibilities for
rounding with the RND operator (see Section 7.7.2 [Miscellaneous Mathemat-
ics|, page 48). The default fuzzbits is 6.

WORKSPACE
The maximum amount of memory (in kilobytes) that Pspp will use to store
data being processed. If memory in excess of the workspace size is required,
then pPsPP will start to use temporary files to store the data. Setting a higher
value will, in general, mean procedures will run faster, but may cause other
applications to run slower. On platforms without virtual memory management,
setting a very large workspace may cause PSPP to abort.

Data output subcommands affect the format of output data. These subcommands are

CCA
CCB
CCC
CCD
CCE
Set up custom currency formats. See Section 6.7.4.2 [Custom Currency For-

mats|, page 37, for details.

DECIMAL
The default DOT setting causes the decimal point character to be ‘.’. A setting
of COMMA causes the decimal point character to be ,’.

Chapter 16: Utilities 166

FORMAT Allows the default numeric input/output format to be specified. The default is
F8.2. See Section 6.7.4 [Input and Output Formats], page 34.

WIB

PSPP extension to set the byte ordering (endianness) used for writing data in IB
or PIB format (see Section 6.7.4.4 [Binary and Hexadecimal Numeric Formats],
page 39). In MSBFIRST ordering, the most-significant byte appears at the left
end of a IB or PIB field. In LSBFIRST ordering, the least-significant byte appears
at the left end. VAX ordering is like MSBFIRST, except that each pair of bytes
is in reverse order. NATIVE, the default, is equivalent to MSBFIRST or LSBFIRST
depending on the native format of the machine running PSPP.

WRB

PSPP extension to set the floating-point format used for writing data in RB for-
mat (see Section 6.7.4.4 [Binary and Hexadecimal Numeric Formats], page 39).
The choices are the same as SET RIB. The default is NATIVE.

In the PSPP text-based interface, the output routing subcommands affect where output
is sent. The following values are allowed for each of these subcommands:

OFF
NONE Discard this kind of output.

TERMINAL
Write this output to the terminal, but not to listing files and other output
devices.

LISTING Write this output to listing files and other output devices, but not to the ter-
minal.

ON
BOTH Write this type of output to all output devices.

These output routing subcommands are:
ERRORS Applies to error and warning messages. The default is BOTH.

MESSAGES
Applies to notes. The default is BOTH.

PRINTBACK
Determines whether the syntax used for input is printed back as part of the

output. The default is NONE.

RESULTS Applies to everything not in one of the above categories, such as the results of
statistical procedures. The default is BOTH.

These subcommands have no effect on output in the psSPP GUI environment.

Output driver option subcommands affect output drivers’ settings. These subcommands
are

Chapter 16: Utilities 167

HEADERS

LENGTH

MORE

WIDTH

TNUMBERS
The TNUMBERS option sets the way in which values are displayed in output
tables. The valid settings are VALUES, LABELS and BOTH. If TNUMBERS is set
to VALUES, then all values are displayed with their literal value (which for a
numeric value is a number and for a string value an alphanumeric string). If
TNUMBERS is set to LABELS, then values are displayed using their assigned labels
if any. (See Section 11.13 [VALUE LABELS], page 106.) If the a value has
no label, then it will be displayed using its literal value. If TNUMBERS is set
to BOTH, then values will be displayed with both their label (if any) and their
literal value in parentheses.

TVARS The TVARS option sets the way in which variables are displayed in output tables.
The valid settings are NAMES, LABELS and BOTH. If TVARS is set to NAMES, then
all variables are displayed using their names. If TVARS is set to LABELS, then
variables are displayed using their label if one has been set. If no label has been
set, then the name will be used. (See Section 11.16 [VARIABLE LABELS],
page 108.) If TVARS is set to BOTH, then variables will be displayed with both
their label (if any) and their name in parentheses.

Logging subcommands affect logging of commands executed to external files. These
subcommands are

JOURNAL

LOG These subcommands, which are synonyms, control the journal. The default is

0N, which causes commands entered interactively to be written to the journal
file. Commands included from syntax files that are included interactively and
error messages printed by PSPP are also written to the journal file, prefixed by
‘>’. OFF disables use of the journal.

The journal is named pspp.jnl by default. A different name may be specified.

System file subcommands affect the default format of system files produced by PspPP.
These subcommands are

COMPRESSION

Not currently used.

SCOMPRESSION

Whether system files created by SAVE or XSAVE are compressed by default. The
default is ON.

Security subcommands affect the operations that commands are allowed to perform.
The security subcommands are

SAFER

Setting this option disables the following operations:
e The ERASE command.
e The HOST command.
e The PERMISSIONS command.

Chapter 16: Utilities 168

e Pipes (file names beginning or ending with ‘|’).

Be aware that this setting does not guarantee safety (commands can still over-
write files, for instance) but it is an improvement. When set, this setting cannot
be reset during the same session, for obvious security reasons.

LOCALE This item is used to set the default character encoding. The encoding may
be specified either as an encoding name or alias (see http://www.iana.org/
assignments/character-sets), or as a locale name. If given as a locale name,
only the character encoding of the locale is relevant.

System files written by PSPP will use this encoding. System files read by PSPP,
for which the encoding is unknown, will be interpreted using this encoding.

The full list of valid encodings and locale names/alias are operating system
dependent. The following are all examples of acceptable syntax on common
GNU/Linux systems.

SET LOCALE=’iso-8859-1".
SET LOCALE="ru_RU.cp1251’.

SET LOCALE=’japanese’.

Contrary to intuition, this command does not affect any aspect of the system’s
locale.

16.21 SHOW

SHOW
ALL]
BLANKS)]

Cl

[

[

C

[

[

[

[

[CCE]
[COPYING]
[DECIMALS]
[DIRECTORY]
[ENVIRONMENT]
[FORMAT]
[FUZZBITS]
[LENGTH]
[MXERRS]
[MXLOOPS]
[MXWARNS]
N

[S

[

[

)

COMPRESSION]
TEMPDIR]
UNDEFINED)]

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Chapter 16: Utilities 169

[VERSION]
[WARRANTY]
[WEIGHT]
[WIDTH]

SHOW can be used to display the current state of PSPP’s execution parameters. Parameters
that can be changed using SET (see Section 16.20 [SET], page 161), can be examined using
SHOW using the subcommand with the same name. SHOW supports the following additional
subcommands:

ALL Show all settings.
cc Show all custom currency settings (CCA through CCE).
DIRECTORY

Shows the current working directory.

ENVIRONMENT
Shows the operating system details.

N Reports the number of cases in the active dataset. The reported number is not
weighted. If no dataset is defined, then ‘Unknown’ will be reported.

TEMPDIR Shows the path of the directory where temporary files will be stored.
VERSION Shows the version of this installation of PSPP.
WARRANTY Show details of the lack of warranty for PSpPp.

COPYING / LICENSE
Display the terms of PSPP’s copyright licence (see Chapter 2 [License|, page 3).

Specifying SHOW without any subcommands is equivalent to SHOW ALL.

16.22 SUBTITLE

SUBTITLE ’subtitle_string’.
or
SUBTITLE subtitle_string.

SUBTITLE provides a subtitle to a particular PSPP run. This subtitle appears at the top
of each output page below the title, if headers are enabled on the output device.

Specify a subtitle as a string in quotes. The alternate syntax that did not require quotes
is now obsolete. If it is used then the subtitle is converted to all uppercase.

16.23 TITLE

TITLE ’title_string’.
or
TITLE title_string.
TITLE provides a title to a particular PSPP run. This title appears at the top of each
output page, if headers are enabled on the output device.
Specify a title as a string in quotes. The alternate syntax that did not require quotes is
now obsolete. If it is used then the title is converted to all uppercase.

Chapter 17: Invoking pspp-convert 170

17 Invoking pspp-convert

pspp-convert is a command-line utility accompanying Pspp. It reads an SPSS or
SPSS/PC+ system file or SPSS portable file or encrypted SPSS syntax file input and
writes a copy of it to another output in a different format. Synopsis:

pspp-convert [options] input output
pspp-convert --help

pspp-convert —-version
The format of input is automatically detected, when possible. The character encoding
of old SPSS system files cannot always be guessed correctly, and SPSS/PC+ system files do
not include any indication of their encoding. Use -e encoding to specify the encoding in
this case.

By default, the intended format for output is inferred based on its extension:

E}Scz Comma-separated value. Each value is formatted according to its variable’s
print format. The first line in the file contains variable names.

sav

sys SPSS system file.

por SPSS portable file.

sps SPSS syntax file. (Only encrypted syntax files may be converted to this format.)

pspp-convert can convert most input formats to most output formats. Encrypted
system file and syntax files are exceptions: if the input file is in an encrypted format,
then the output file must be the same format (decrypted). To decrypt such a file, specify
the encrypted file as input. The output will be the equivalent plaintext file. You will be
prompted for the password (or use -p, documented below).

Use -0 extension to override the inferred format or to specify the format for unrecog-
nized extensions.

The following options are accepted:

-0 format

--output-format=format
Specifies the desired output format. format must be one of the extensions listed
above, e.g. -0 csv requests comma-separated value output.

-c maxcases
--cases=maxcases
By default, all cases are copied from input to output. Specifying this option to
limit the number of cases written to output to maxcases.

—e charset

--encoding=charset
Overrides the encoding in which character strings in input are interpreted. This
option is necessary because old SPSS system files, and SPSS/PC+ system files,
do not self-identify their encoding.

Chapter 17: Invoking pspp-convert 171

-p password

--password=password
Specifies the password to use to decrypt an encrypted SPSS system file or syntax
file. If this option is not specified, pspp-convert will prompt interactively for
the password as necessary.

Be aware that command-line options, including passwords, may be visible to
other users on multiuser systems.

-h

--help Prints a usage message on stdout and exits.

-v

--version
Prints version information on stdout and exits.

Chapter 18: Invoking pspp-dump-sav 172

18 Invoking pspp-dump-sav

pspp-dump-sav is a command-line utility accompanying PSPp. It reads one or more SPSS
system files and prints their contents. The output format is useful for debugging system
file readers and writers and for discovering how to interpret unknown or poorly under-
stood records. End users may find the output useful for providing the PSPP developers
information about system files that PSPP does not accurately read.

Synopsis:
pspp-dump-sav [-d[maxcases] | --datal=maxcases]] file. . .

pspp-dump-sav --help | -h

pspp-dump-sav --version | -v
The following options are accepted:

-d[maxcases|

--data[=maxcases|
By default, pspp-dump-sav does not print any of the data in a system file, only
the file headers. Specify this option to print the data as well. If maxcases is
specified, then it limits the number of cases printed.

-h

--help Prints a usage message on stdout and exits.
-v

--version

Prints version information on stdout and exits.

Some errors that prevent files from being interpreted successfully cause pspp-dump-sav
to exit without reading any additional files given on the command line.

Chapter 19: Not Implemented

19 Not Implemented

This chapter lists parts of the PSPP language that are not yet implemented.

2SLS Two stage least squares regression
ACF Autocorrelation function

ALSCAL Multidimensional scaling

ANACOR Correspondence analysis

ANQOVA Factorial analysis of variance
CASEPLOT Plot time series

CASESTOVARS
Restructure complex data

CATPCA Categorical principle components analysis
CATREG Categorical regression
CCF Time series cross correlation

CLEAR TRANSFORMATIONS
Clears transformations from active dataset

CLUSTER Hierarchical clustering
CONJOINT Analyse full concept data

CORRESPONDENCE
Show correspondence

COXREG Cox proportional hazards regression
CREATE Create time series data

CSDESCRIPTIVES
Complex samples descriptives

CSGLM Complex samples GLM

CSLOGISTIC
Complex samples logistic regression

CSPLAN Complex samples design
CSSELECT Select complex samples

CSTABULATE
Tabulate complex samples

CTABLES Display complex samples
CURVEFIT Fit curve to line plot
DATE Create time series data

DEFINE Syntax macros

173

Chapter 19: Not Implemented

DETECTANOMALY
Find unusual cases

DISCRIMINANT
Linear discriminant analysis

EDIT obsolete

END FILE TYPE
Ends complex data input

FILE TYPE Complex data input
FIT Goodness of Fit
GENLOG Categorical model fitting

GET TRANSLATE
Read other file formats

GGRAPH Custom defined graphs

HILOGLINEAR
Hierarchical loglinear models

HOMALS Homogeneity analysis
IGRAPH Interactive graphs
INFO Local Documentation

KEYED DATA LIST
Read nonsequential data

KM Kaplan-Meier
LOGLINEAR
General model fitting
MANQVA Multivariate analysis of variance
MAPS Geographical display

MATRIX Matrix processing

MATRIX DATA
Matrix data input

MCONVERT Convert covariance/correlation matrices
MIXED Mixed linear models

MODEL CLOSE
Close server connection

MODEL HANDLE
Define server connection

MODEL LIST
Show existing models

174

Chapter 19: Not Implemented

MODEL NAME
Specify model label

MULTIPLE CORRESPONDENCE
Multiple correspondence analysis

MULT RESPONSE
Multiple response analysis

MVA Missing value analysis

NAIVEBAYES
Small sample bayesian prediction

NLR Non Linear Regression
NOMREG Multinomial logistic regression

NONPAR CORR
Nonparametric correlation

NUMBERED

OLAP CUBES
On-line analytical processing

OMS Output management

ORTHOPLAN
Orthogonal effects design

OVERALS Nonlinear canonical correlation
PACF Partial autocorrelation

PARTIAL CORR
Partial correlation

PLANCARDS
Conjoint analysis planning
PLUM Estimate ordinal regression models
POINT Marker in keyed file
PPLOT Plot time series variables

PREDICT Specify forecast period

PREFSCAL Multidimensional unfolding
PRINCALS PCA by alternating least squares
PROBIT Probit analysis

PROCEDURE QUTPUT
Specify output file

PROXIMITIES
Pairwise similarity

175

Chapter 19: Not Implemented

PROXSCAL Multidimensional scaling of proximity data

RATIO STATISTICS
Descriptives of ratios

READ MODEL
Read new model

RECORD TYPE
Defines a type of record within FILE TYPE

REFORMAT Read obsolete files

REPEATING DATA
Specify multiple cases per input record

REPORT Pretty print working file
RMV Replace missing values
SCRIPT Run script file

SEASON Estimate seasonal factors

SELECTPRED
Select predictor variables

SPCHART Plot control charts
SPECTRA Plot spectral density
STEMLEAF Plot stem-and-leaf display

SUMMARIZE
Univariate statistics

SURVIVAL Survival analysis

TDISPLAY Display active models

TREE Create classification tree
TSAPPLY Apply time series model
TSET Set time sequence variables
TSHOW Show time sequence variables
TSMODEL Estimate time series model
TSPLOT Plot time sequence variables

TWOSTEP CLUSTER
Cluster observations

UNIANOVA Univariate analysis

UNNUMBERED
obsolete

VALIDATEDATA
Identify suspicious cases

176

Chapter 19: Not Implemented

VARCOMP Estimate variance

VARSTOCASES
Restructure complex data

VERIFY Report time series
WLS Weighted least squares regression
XGRAPH High resolution charts

177

Chapter 20: Bugs 178

20 Bugs

Occasionally you may encounter a bug in PSPP.

20.1 When to report bugs

If you discover a bug, please first:

e Make sure that it really is a bug. Sometimes, what may appear to be a bug, turns out
to be a misunderstanding of how to use the program. If you are unsure, ask for advice
on the pspp-users mailing list. Information about the mailing list is at http://lists.
gnu.org/mailman/listinfo/pspp-users.

e Try an up to date version of PSPP; the problem may have been recently fixed.

e If the problem persists in the up to date version, check to see if it has already
been reported. Reported issues are listed at http://savannah.gnu.org/bugs/?
group=pspp. For known issues in individual language features, see the relevant section
in see Chapter 6 [Language|, page 28.

e If the problem exists in a recent version and it has not already been reported, then
please report it.

20.2 How to report bugs

The best way to send a bug report is using the web page at http: //savannah .
gnu . org /bugs / 7 group=pspp. Alternatively, bug reports may be sent by email to
bug-gnu-pspp@gnu.org.

In your bug report please include:

e The version of PSPP in which you encountered the problem. That means the precise
version number. Do not simply say “the latest version” — releases happen quickly, and
bug reports are archived indefinitely.

e The operating system and type of computer on which it is running. On a GNU or
other unix-like system, the output from the uname command is helpful.

e A sample of the syntax which causes the problem or, if it is a user interface problem,
the sequence of steps required to reproduce it. Screen shots are not usually helpful
unless you are reporting a bug in the graphical user interface itself.

e A description of what you think is wrong: What happened that you didn’t expect, and
what did you expect to happen?

The following is an example of a useful bug report:
When I run PSPP 0.8.4 on the system:
"Linux knut 3.5.3-gnu #1 PREEMPT Tue Aug 28 10:49:41 UTC 2012 mips64 GNU/Linux"
Executing the following syntax:

DATA LIST FREE /x *.
BEGIN DATA.

123

END DATA.

LIST.

http://lists.gnu.org/mailman/listinfo/pspp-users
http://lists.gnu.org/mailman/listinfo/pspp-users
http://savannah.gnu.org/bugs/?group=pspp
http://savannah.gnu.org/bugs/?group=pspp
http://savannah.gnu.org/bugs/?group=pspp
http://savannah.gnu.org/bugs/?group=pspp
mailto:bug-gnu-pspp@gnu.org

Chapter 20: Bugs 179

results in:

4
5
6

I think the output should be:

1
2
3

Here, the developers have the necessary information to reproduce the circumstances of the
bug report, and they understand what the reporter expected.

Conversely, the following is a useless bug report:

I downloaded the latest version of PSPP and entered a sequence of numbers,
but when I analyse them it gives the wrong output.

In that example, it is impossible to reproduce, and there is no indication of why the reporter
thought what he saw was wrong.

Note that the purpose of bug reports is to help improve the quality of PspPP for the
benefit of all users. It is not a consultancy or support service. If that is what you want,
you are welcome to make private arrangements. Since PSPP is free software, consultants
have access to the information they need to provide such support. The psSpp developers
appreciate all users’ feedback, but cannot promise an immediate response.

Please do not use the bug reporting address for general enquiries or to seek help in using,
installing or running the program. For that, use the pspp-users mailing list mentioned above.

Chapter 21: Function Index

21 Function Index

(

(variable) ... 58
A

ABS . 48
ACOS .. e 49
ANY . 50
ARCOS ..o e 49
ARSIN ..o e 49
ARTAN ... e 49
ASTIN . e 49
ATAN .. e 49
C

CDF.BERNOULLI0itit ittt i ieiiaennn 62
CDF.BETA ... e e e 59
CDF.BINOM. ..ottt et ettt e 62
CDF.CAUCHY . ..ot et 59
CDF.CHISQ. ...ttt et 59
CDF . EXP .. e 59
CDF . F o e 60
CDF.GAMMA e e 60
CDF.GEOM. . .oiti i e et e e 62
CDF.HYPER. e 63
CDF.LAPLACE e e 60
CDF.LNORMAL e 60
CDF.LOGISTIC ...t e 60
CDF.NEGBIN. ...ttt e e 63
CDF.NORMALttt et 61
CDF.PARETO. ...ttt et e e 61
CDF.POISSONottt et 63
CDF.RAYLEIGH i, 61
CDF . T . e 61
CDF.T1G .. e e e 61
CDF . T2G ..ottt et e e e 62
CDF.UNIFORMiti ittt i e e ee e 62
CDF.VBNOR. ...ttt e e 59
CDF.WEIBULLt e et 62
CDENORMot e e e e e 61
CEVAR .. e 50
CONCAT .. e e e 51
COS . e 49
CTIME.DAYS . .. i et e 54
CTIME.HOURS e et 54
CTIME.MINUTES 54
CTIME.SECONDSot e e 54
D

DATE.DMY .. e 55
DATE . MDY ..o e 55

DATE.MOYR......oiii i 55

180
DATE. QYR ...t 55
DATE.WKYR . .. e oo 55
DATE.YRDAY\ 55
DATEDIFFottt 57
DATESUMot 57
E
EXP. oo 48
I
IDF.BETA ... 59
IDF.CAUCHYttt 59
IDF.CHISQ. .. 59
IDF.EXP .o e 59
IDF.F oot 60
IDF.GAMMA . ..ot 60
IDF.LAPLACE ...t 60
IDF.LNORMAL ...t 60
IDF.LOGISTIC ..o 60
IDF.NORMAL 61
IDF.PARETO. ...t 61
IDF.RAYLEIGH . ..o 61
111 R 61
IDF.TLG ..o e 61
IDF.T2G .ot 62
IDF.UNIFORM ... 62
IDF.WEIBULLoooueee e 62
10))))) G 51
L
LAG. . ettt e 57
LENGTH . ..ottt e 51
LGLO vt et e 48
LN e 48
LNGAMMA ..ot eeeeeeeeeeee 48
LOWER - .. et e 51
LPAD ..ot 51, 52
LTRIM oot 52
M
MAK. oo e 50
MEAN ...t 51
MEDIAN ..ot e 51
MIN. oot e e 51
MISSING . ..t e 49
MOD. ..t e 48
MODLO - oot 48
N
NCDF.BETA. ...\t 59

Chapter 21: Function Index

NCDF.CHISQ. « + v v vveee et e e e 59
NMISS .ttt 49
NORMAL . ..ot e 61
NPDF.BETA 59
NUMBERot 52
NVALID . .vt ettt e e e e 49
P

PDF.BERNOULLIot 62
PDF.BETAt 59
PDFE.BINOM.ot e 62
PDE.BUNORot e 59
PDF.CAUCHY . . o\ttt 59
PDF.EXP oottt et et 59
120 60
PDF.GAMMA . ..ot 60
PDF.GEOM\ttt e 62
PDF.HYPERt 63
PDF.LANDAU. ..ottt e 60
PDF.LAPLACE . ..ot 60
PDF.LNORMALot 60
PDF.LOG . ettt 63
PDF.LOGISTIC ..ot 60
PDF.NEGBIN.uunneee e, 63
PDF.NORMALt 61
PDE.NTATIL . ..ot e 61
PDF.PARETO. ..ot 61
PDF.POISSON ...ttt 63
PDF.RAYLEIGH ...t 61
PDF.RTAILt 61
125 61
PDF.T1G ettt et e e 61
PDF.T2G oo eee et ettt e 62
PDF.UNIFORMo 62
PDF.WEIBULLt 62
PDF.XPOWER. . ..ottt 59
13:70): 3 61
R

RANGE . ..ottt e 50
REPLACE ...ttt 52
130010) o QU 52
130 J 48
132 D 52
RTRIM .o evoe ettt e 53
RV.BERNOULLIot 62
RV.BETA . oottt 59
RV.BINOM. . ..ot e 62
RV.CAUCHY . ..ottt 59
RV.CHISQ . . ettt 59
RV.EXP ..ot 59
0 60
RV.GAMMAt 60
RV.GEOM ..ottt e 62
RV.HYPER\ttt e 63

181
RV.LAPLACE. e 60
RV.LEVY ... 60
RV.LNORMAL.o e 60
RV.LOG 63
RV.LOGISTIC ...ttt 60
RV.LVSKEW. ... 60
RV.NEGBIN.......coiiiiiii i 63
RV.NORMAL 61
RV.NTAIL s 61
RV.PARETO. 61
RV.POISSON.o 63
RV.RAYLEIGH i, 61
RV.RTAIL s 61
RV T 61
RV.UNIFORM.o 62
RV.WEIBULL. 62
RV.XPOWER. 59
S
SD 51
SIG.CHISQ.ot it 59
SIG.F .o 60
SIN. 49
SQRT .o 48
STRING . ..ottt s 53
STRUNC . .. 53
SUBSTR ... 53
SUM. 51
SYSMIS .. 50
T
TAN . 49
TIME.DAYS. ... o 54
TIME. HMS ... o i 54
TRUNC ... 49
U
UNIFORMt e 62
UPCASE ... 53
‘&7
VALUE . ..o 50
VARIANCE 51
X
XDATE.DATE. 55
XDATE.HOUR.o 55
XDATE.JDAY 55
XDATE.MDAY 56
XDATE.MINUTE 56
XDATE.MONTHo 56
XDATE.QUARTER 56
XDATE.SECONDcoiiiii i 56

Chapter 21: Function Index

XDATE.TDAYo 56
XDATE.TIME.o 56
XDATE.WEEK. o 56
XDATE.WKDAY 56

XDATE.YEAR. ... i 56

Y

YRMODA

182

Chapter 22: Command Index

22 Command Index

ADD DOCUMENTi e
ADD FILES e
ADD VALUE LABELSt
AGGREGATE.
APPLY DICTIONARYo,
AUTORECODEt

B

BEGIN DATA e
BINOMIAL.o

CHISQUARE.ottt
Cochrano vt e e
COMMENT ..ttt e e e e e e
COMPUTEttt
CORRELATIONS . ..ottt et

D

DATA LIST ..o i
DATALISTFIXED..........ooiiiiiiiiiiiinn.
DATALISTFREE.......o,
DATA LIST LIST.....oiiiiiiiiii it
DATAFILE ATTRIBUTE................. .. .ooinnt.
DATASET . ..ot
DATASET ACTIVATE it
DATASET CLOSE.ot
DATASET COPY.o
DATASET DECLARE i
DATASET DISPLAY
DATASET NAME. i
DELETE VARIABLESo,

DESCRIPTIVES i

DISPLAY ...

DISPLAY DOCUMENTS...... ...,

183
E
ECHO ..ot 158
END CASE . eveeee et 70
END DATA .. e 64
END FILE ..ottt 70
ERASE ...ttt 158
EXAMINE ...t 131
EXECUTEt 158
EXPORT . ..o et 82
F
FACTOR . .« oo e e 138
FILE HANDLEouuiieaeiaineenenn. 70
FILE LABELo'ueiineeaeeeeeeeen, 159
FILTER . .ot eeeeeeeeeeeeee 121
FINISH ...t 159
FLIP ..ot 116
FORMATS . .« oo e e e e 101
FREQUENCIESttt 129
FRIEDMANttt 145
G
GET ..ot 15, 82
GET DATA .ot et 83
GLM .« e e e e 140
GRAPH . ..o e 133
H
HOST ..ot 159
I
TF e 117
11120015 R 89
INCLUDEt e 159
INPUT PROGRAM. 73
INSERT ..ot 159
K
Ko et 146
O R 146
KENDALLttt e 145
KOLMOGOROV-SMIRNOV, .. 146
KRUSKAL-WALLIS\, 146
L
LEAVE ...t 101
LIST ..ot e 15, 76
LOGISTIC REGRESSIONuuvvennnnennnnnnn.. 141

Chapter 22: Command Index

MATCHFILES.............o i,
MCNEMAR...... ... i,

MODIFY VARS....... ...,
MRSETSo

N

NOFCASES ...t
NEWFILE ...,
NPARTESTS....... ..ot
NUMERIC....... ..ot

@)

ONEWAYo
QUTPUT ...

P

PRINT EJECT........oiiiiiiiiiin
PRINT FORMATS ...,
PRINT SPACE........... ...,

Q

184
RUNS . e 147
S
SAMPLE\ttt 122
SAVE . ..ot 16, 89
SAVE TRANSLATEot 91
SELECT IF ...\t 122
SET .o et 161
)10 R 168
SIGN ..ot 147
SORT CASESot 120
SORT VARIABLES'uueeeeeeeeeeneann. 105
SPLIT FILE.ooeueeeeeeeeeeeen, 122
STRING ..ottt e e e 107
SUBTITLEt 169
SYSFILE INFO......uuveeeeeeeeieeee 93
T
T=TEST oot 23, 148
TEMPORARYot 123
TITLE « oo e 169
U
UPDATE . ..ot 99
Vv
VALUE LABELSottt 106
VARIABLE ALIGNMENTcovuuueeeennn... 108
VARIABLE ATTRIBUTE..........covuueeennnn... 107
VARIABLE LABELScuueeeenneneenn.. 108
VARIABLE LEVELt 109
VARIABLE ROLE\t 109
VARIABLE WIDTHcouuueeeenneenenn... 109
VECTOR .. oot e e e e e 110
W
WEIGHT ..ot 124
WILCOXON . ..t 148
WRITE ..o e e e 80
WRITE FORMATS ... 110
X
XEXPORTo et 93
XSAVE . e 93

Chapter 23: Concept Index

23 Concept Index

PSPP languagecouuinuiiiiiiinnannn... 2
n

S 28
10 1] 211110 A 34
BDATE . .o 34
BIDATE . . oo 34
SLENGTH . ..ottt e 34
BSYSMIS . o 34
BTIME ..ottt e 34
SWIDTH . ..ottt e 34

B 47
9

PP 28
(e 48
) 46
) 48
*

KT 46
KK 47
+

T 46
b

PSPP, command structure...................... 29
PSPP, invokingo 4
PSPP, language 28
PP 46, 47

185
PP 32
.. 45
e 46
<
e 47
o 47
D e 47
T 47
>
> 47
D 47
S 32
4
“Isdefined as” L 45
R P 47
e 47
T 47
absolute value............ ..., 48
additionoo i 46
analysis of variance.................. ... 140, 150
AND . .t 47
ANOVA ... 140, 150
ATCCOSITIE . . vt ettt e et 49
ATCSITIE ottt et e 49
arctangent......... ... 49
Area under curve..............iiiiiiiiiie... 155
arguments, invalid........... oL 55
arguments, minimum valid..................... 50

arguments, of date construction functions...... 54

Chapter 23: Concept Index

arguments, of date extraction functions........ 55
arithmeticmean.............................. 143
arithmetic operators........................... 46
attributes of variables.......................... 32

B

Backus-Naur Form, 45
barchart L 130, 134, 138
Batch syntax........... oo 30
binary formats............ ... oot 39
binomial test i 144
bivariate logistic regression 141
BNF 45
Boolean.......... ... i 46, 47
boxplot ... 131
bugs ... 178

C

CASE CONVETSION . ..t 53
case-sensitivity L 28
CASES « vttt ettt e e e 64
changing directory.............., 157
changing file permissions...................... 161
chi-square............ i 137
chisquare.o 137
chisquare test L. 145
clusteringo 151
Cochran Q test.........cooviiiiieiiiiin... 145
coefficient of concordance..................... 145
coefficient of variation 50
comma separated values....................... 16
command file.............. 44
command syntax, description of................ 45
commands, orderingo.oiiiiia.. 31
commands, structure 29
commands, unimplemented 173
concatenation il 51
conditionals 125
CONSISEENCY .« .o vttt 19
constructing dates................. i 54
constructing times.............. 54
control flow i 125
convention, TO..........cuuiiiiiiinneeennn.. 34
copyTight 3
correlation L 135
COSIIIE .« o vttt ettt 49
COVATIATICE .+« ottt e ettt e e 135
Cronbach’s Alpha 154
cross-case function................. 57
currency formats oo 37
custom attributes............... o 33

186
datafiles.......ccooiiii i 85
data reduction............. ... oo 138
data, embedding in syntax files................ 66
Data, embedding in syntax files................ 64
data, fixed-format, reading..................... 66
data, reading from a file.......... 66
databases 16, 84
dataset ... 32
date examination.............. ... oL 55
date formats........... ... o i 40
date, Julian o i 57
dates. ... 53
dates, concepts ...t 53
dates, constructing L 54
dates, day of the month........................ 56
dates, day of the week 56
dates, day of the year.......................... 55
dates, day-month-year 55
dates, indays............o i i 55
dates, in hours........... oL 55
dates, in minutes ool 56
dates, inmonths............. 56
dates, in quarters............... 56
dates, in seconds. 56
dates, in weekdays............ ool 56
dates, in weeks i 56
dates, in years...........c.oiiiiiiiiiiiii.. 56
dates, mathematical properties of 56
dates, month-year 55
dates, quarter-year 55
dates, time of day L 56
dates, valid........ ... o o i 53
dates, week-year.............iiiiiiiiiii 55
dates, year-day ...t 55
day of the month.............................. 56
day of the week......... 56
day of theyear........... 55
day-month-year............. L 55
days .o 54, 55, 56
decimal places.............iiiiiiii 160
description of command syntax 45
deviation, standard 51
dictionaryo 32
directory . ..o 157
division ... 46
DocBook ... 2
E
embedding data in syntax files................. 66
Embedding data in syntax files 64
embedding fixed-format data................... 66
encoding, characters.......................... 168
o PP 47
equality, testing it 47
erroneous data. ... 16
errors, indata........ ... i oo 16

examination, of times.......................... 54

Chapter 23: Concept Index

Exploratory data analysis................ 131, 133
exponentiation i, 47
@XPreSSION. ...ttt 45
expressions, mathematical 46
extraction, of dates.............. 55
extraction, of time............. 54

F

factor analysis.......... ..., 138
factorial anova il 140
false. ... 47
file definition commands....................... 30
filehandles............ ... i, 44
filemode..........oo i 161
file, command 44
file,data ... 44
file, output ... 44
file, portable........ oo 44
file, syntax file......... i 44
file, system ...t 44
fixed effects ... 140
fixed-format data, reading 66
flow of control.........ol 125
formats.o 34
Friedman testt 145
function, cross-case.......... ..., 57
functions......... .o i i 48
functions, miscellaneous 57
functions, missing-value........................ 49
functions, statistical 50
functions, string oo 51
functions, time & date.......... 53

G

GE .o 47
geometricmeano ol 143
GIUMETIC « oottt 84
Graphic user interface 12
greater than......... oL 47
greater than or equal to 47
grouping operatorso .. 46
€ PP 47

harmonicmean......................iiii.... 143
headers........ ... i 167
hexadecimal formats........................... 39
histogram............ 130, 131, 133
hours......cooii i 54, 55
hours-minutes-seconds 54
HTML 2,9
Hypothesis testing..........., 23

187
I
identifiers ... 28
identifiers, reserved i 28
inequality, testing........... ool 47
INpubt.o 64
input program commands...................... 30
integer......... i 45
INEEGETS ..ot 28
Interactive syntax il 30
intersection, logical L 47
introductioncoiiiiiii i 2
INVEISE COSINE. ..t vvvttiiii i 49
inverse Sine.............ooiiiiiiinnnnnnnnnnnn. 49
inverse tangent o i il 49
inversion, logical............. L. 47
Inverting data.......... ool 19
invocation.......... i i il 4
Invocation.................a 170, 172
J
Juliandate......... ... 57
K
K-means clustering 151
Kendall’s Wtest ... 145
keywords.......... .. i 45
Kolmogorov-Smirnov test..................... 146
Kruskal-Wallis test ...t 146
L
labels, value.......... ... o i 33
labels, variable oL 33
language, PSPPciiiiiiiiinann... 2,28
language, command structure.................. 29
language, lexical analysis 28
language, tokens..........ol 28
LE ittt e 47
length.... 167
lessthano i 47
less than or equal to............ ... ot 47
lexical analysis, 28
licence.o 3
LiCenSe . .ot 3
Likert scale...... ..o, 19
linear regression, 24, 152
locale ..o 168
logarithms.o 48
logical intersection............... 47
logical inversion L 47
logical operators............. L. 47
logical union............ i 47
logistic regression............. ..o, 141
LOOPS « v vt 125

Chapter 23: Concept Index

M

Mann-Whitney U test........................ 146
mathematical expressions...................... 46
mathematics................................... 48
mathematics, advanced 48
mathematics, applied to times & dates......... 56
mathematics, miscellaneous.................... 48
MAXIMUID .o oet ettt 50
McNemar test..........cooviiiiiiiiiinnee.. 147
86 TCT) 51
00TC2 0 1= 142
median 51
Median test ..o 147
membership, of setol 50
memory, amount used to store cases.......... 165
ININIMUI .« o 51
minimum valid number of arguments........... 50
IMINULES .« vt 54, 56
missing values........... 32, 33, 49
MOAE. .ottt 161
modulus..........o 48
modulus, by 10....... ... 48
month-year.......... L 55
months.......... 56
88703 PN 167
multiplication o i 46

names, of functions.................. 48
NE . 47
NEZALION . . . 47
nonparametric tests o oL 144
nonterminals i 45
normality, testing 20, 131, 133
NOT . .o 47
npplot. ... 131
null hypothesis.......... oL 23
NUMDEY ..ottt e 45
NUMDETS . . oottt 28
numbers, converting from strings............... 52
numbers, converting to strings................. 53
numeric formats............. i, 35
O

obligations, your......... i 3
0bServationsot 64
OpenDocument. ..., 84
operations, order of 63
operator precedenceoiiiiiiiii., 63
OPErators. ...t 29, 45, 48
operators, arithmetic.......................... 46
operators, grouping............... 46
operators, logical 47
0] P 47
order of commands oo 31
order of operationso L. 63

188
output ... 64
output file....... ... 44
P
p-value. 23
padding strings........... oo oL 52
PAGET . o ettt 167
parentheses........ il 46, 48
PDF . 2,7
percentiles................ 130, 132
period. ... 32
piechart 130
portable file 44
POSEEIes . .. 84
Postscript ... 7
PostScript ... 2
precedence, operator. ..., 63
precision, of output............. ...l 160
principal axis factoring 138
principal components analysis 138
print format.......... . .. 33
ProCedures 31
productionsot 45
PSPP—COnVert 170
PSPP-AUMP=SaAV\ttt 172
PSPPIRE 12
punctuators.......... ..ol 29, 45
Q
Q, Cochran Q............ ... 145
quarter-yearoooiiiiiiiiiiiiiaaa 55
QUATEETS . o o ettt et e 56
R
reading data......... ..o 15
reading data from afile............. 66
reading fixed-format data...................... 66
TEALS. . vttt 28
Receiver Operating Characteristic 155
recoding data............ it 18
TEGIeSSION ..o vvv i 152
reliability..........coo i 19
replacing substrings oo 52
reserved identifiers.......... ool 28
restricted transformations...................... 30
rights, your.......... .. o i i 3
roundingoovii i 48
Tuns test ... 147
S
SAVITIEZ .+« v ettt e et e 16
scatterplot 133
scratch variables.......... ool 43

SCIEEMINEG . ..ottt 16

Chapter 23: Concept Index

searching Strings........... ... 51
SECONAS . .ttt 54, 56
set membership..................... 50
signtest....... ... 147
SINE .ot 49
spreadlevel plot............ 131
spreadsheet files..............., 84
spreadsheets................ i i 16
SQUATE TOOES ..o v vttt 48
standard deviation............l 51
start symbol....... 45
statisticsooii 50
string ... 45
string formats oo 43
string functions........ o L 51
SErings. ... 28
strings, case of il 51, 53
strings, concatenation of 51
strings, converting from numbers............... 53
strings, converting to numbers................. 52
strings, finding length of 51
strings, padding............o o 51, 52
strings, replacing substrings.................... 52
strings, searching backwards................... 52
strings, taking substrings of 53
strings, trimming 52, 53
strings, truncating.............. 53
SUDSEIINGS « v 53
subtraction............ .o i i 46
5100 51
SVG . 7
symbol, starto 45
syntax file....... ... 44
SYSMIS. .o 18
system file...... 44
system files....... 15
system variables........ol 34
system-missing o oo 47

1 23
tangent........ 49
terminals............. ... 45
terminals and nonterminals, differences 45
testing for equalityl 47
testing for inequality.............. 47
text files.o 85
tIme. ... 56
time examination............. o oL 54
time formats oo 40
time, concepts...... ... i i 53
time, indays. ... 54, 55
time, in hours............. o i 54, 55
time, in hours-minutes-seconds................. 54
time, in minutes ... 54, 56
time, in seconds. ...l 54, 56

time, instants of oL 53

189
time, intervals......... o ol 53
time, lengths of 54
time, mathematical properties of............... 56
times. ... 53
times, constructingl 54
times, indays i 56
TNUMDbErst 167
TO convention ...l 34
BOKeNS . .. 28
transformation oo 16
transformations............... 30, 111
trigonometry ... ool 49
troubleshooting............ L 178
BrUe . 47
truncation.......... ... oo oo 49
type of variables............... ..o, 33
U
U, Mann-Whitney U ... 146
unimplemented commands.................... 173
union, logical 47
univariate analysis of variance 140
utility commands............ ... ool 30
\%
value label....... o 58
value labels......... ... 33
values, Boolean.................. ..ol 46
values, missingooiiiia.. 32, 33, 49
values, system-missing......................... 47
var-list. 45
R = ot o= 45
variable o 32
variable labels....... o il 33
variable names, ending with period 32
variable role......... ... i 33
variables 14
variables, attributes of 32
variables, system L 34
variables, type...... o i 33
variables, width o L 33
VATIANCE . oo v ettt ettt 51
variation, coefficient of......................... 50
\%%
WEEK .. 56
week-year 55
weekday 56
white space, trimming...................... 52, 53
width ... 167
width of variables............. 33
wilcoxon matched pairs signed ranks test 148
WOTKSPACE .« oot 165
write format........ 33

Chapter 23: Concept Index 190

Y your rights and obligations...................... 3

Appendix A: GNU Free Documentation License 191

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix A: GNU Free Documentation License 192

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain AScIil without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 193

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 194

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 195

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 196

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 197

10. FUTURE REVISIONS OF THIS LICENSE

11.

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 198

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Your rights and obligations
	Invoking pspp
	Main Options
	PDF, PostScript, and SVG Output Options
	Plain Text Output Options
	HTML Output Options
	OpenDocument Output Options
	Comma-Separated Value Output Options

	Invoking psppire
	The graphic user interface

	Using
	Preparation of Data Files
	Defining Variables
	Listing the data
	Reading data from a text file
	Reading data from a pre-prepared file
	Saving data to a file.
	Reading data from other sources
	Exiting PSPP

	Data Screening and Transformation
	Identifying incorrect data
	Dealing with suspicious data
	Inverting negatively coded variables
	Testing data consistency
	Testing for normality

	Hypothesis Testing
	Testing for differences of means
	Linear Regression

	The language
	Tokens
	Forming commands of tokens
	Syntax Variants
	Types of Commands
	Order of Commands
	Handling missing observations
	Datasets
	Attributes of Variables
	Variables Automatically Defined by
	Lists of variable names
	Input and Output Formats
	Basic Numeric Formats
	Custom Currency Formats
	Legacy Numeric Formats
	Binary and Hexadecimal Numeric Formats
	Time and Date Formats
	Date Component Formats
	String Formats

	Scratch Variables

	Files Used by
	File Handles
	Backus-Naur Form

	Mathematical Expressions
	Boolean Values
	Missing Values in Expressions
	Grouping Operators
	Arithmetic Operators
	Logical Operators
	Relational Operators
	Functions
	Mathematical Functions
	Miscellaneous Mathematical Functions
	Trigonometric Functions
	Missing-Value Functions
	Set-Membership Functions
	Statistical Functions
	String Functions
	Time & Date Functions
	How times & dates are defined and represented
	Functions that Produce Times
	Functions that Examine Times
	Functions that Produce Dates
	Functions that Examine Dates
	Time and Date Arithmetic

	Miscellaneous Functions
	Statistical Distribution Functions
	Continuous Distributions
	Discrete Distributions

	Operator Precedence

	Data Input and Output
	BEGIN DATA
	CLOSE FILE HANDLE
	DATAFILE ATTRIBUTE
	DATASET commands
	DATA LIST
	DATA LIST FIXED
	Examples

	DATA LIST FREE
	DATA LIST LIST

	END CASE
	END FILE
	FILE HANDLE
	INPUT PROGRAM
	LIST
	NEW FILE
	PRINT
	PRINT EJECT
	PRINT SPACE
	REREAD
	REPEATING DATA
	WRITE

	System and Portable File I/O
	APPLY DICTIONARY
	EXPORT
	GET
	GET DATA
	Spreadsheet Files
	Postgres Database Queries
	Textual Data Files
	Reading Delimited Data
	Reading Fixed Columnar Data

	IMPORT
	SAVE
	SAVE TRANSLATE
	Writing Comma- and Tab-Separated Data Files

	SYSFILE INFO
	XEXPORT
	XSAVE

	Combining Data Files
	Common Syntax
	ADD FILES
	MATCH FILES
	UPDATE

	Manipulating variables
	ADD VALUE LABELS
	DELETE VARIABLES
	DISPLAY
	FORMATS
	LEAVE
	MISSING VALUES
	MODIFY VARS
	MRSETS
	NUMERIC
	PRINT FORMATS
	RENAME VARIABLES
	SORT VARIABLES
	VALUE LABELS
	STRING
	VARIABLE ATTRIBUTE
	VARIABLE LABELS
	VARIABLE ALIGNMENT
	VARIABLE WIDTH
	VARIABLE LEVEL
	VARIABLE ROLE
	VECTOR
	WRITE FORMATS

	Data transformations
	AGGREGATE
	AUTORECODE
	COMPUTE
	COUNT
	FLIP
	IF
	RECODE
	SORT CASES

	Selecting data for analysis
	FILTER
	N OF CASES
	SAMPLE
	SELECT IF
	SPLIT FILE
	TEMPORARY
	WEIGHT

	Conditional and Looping Constructs
	BREAK
	DO IF
	DO REPEAT
	LOOP

	Statistics
	DESCRIPTIVES
	FREQUENCIES
	EXAMINE
	GRAPH
	Scatterplot
	Histogram
	Bar Chart

	CORRELATIONS
	CROSSTABS
	FACTOR
	GLM
	LOGISTIC REGRESSION
	MEANS
	NPAR TESTS
	Binomial test
	Chisquare Test
	Cochran Q Test
	Friedman Test
	Kendall's W Test
	Kolmogorov-Smirnov Test
	Kruskal-Wallis Test
	Mann-Whitney U Test
	McNemar Test
	Median Test
	Runs Test
	Sign Test
	Wilcoxon Matched Pairs Signed Ranks Test

	T-TEST
	One Sample Mode
	Independent Samples Mode
	Paired Samples Mode

	ONEWAY
	QUICK CLUSTER
	RANK
	REGRESSION
	Syntax
	Examples

	RELIABILITY
	ROC

	Utilities
	ADD DOCUMENT
	CACHE
	CD
	COMMENT
	DOCUMENT
	DISPLAY DOCUMENTS
	DISPLAY FILE LABEL
	DROP DOCUMENTS
	ECHO
	ERASE
	EXECUTE
	FILE LABEL
	FINISH
	HOST
	INCLUDE
	INSERT
	OUTPUT
	PERMISSIONS
	PRESERVE and RESTORE
	SET
	SHOW
	SUBTITLE
	TITLE

	Invoking pspp-convert
	Invoking pspp-dump-sav
	Not Implemented
	Bugs
	When to report bugs
	How to report bugs

	Function Index
	Command Index
	Concept Index
	GNU Free Documentation License

